• Title/Summary/Keyword: LTRs

Search Result 19, Processing Time 0.025 seconds

Analysis of RBC Damage Using Laser Tweezers Raman Spectroscopy (LTRS) During Femtosecond Laser Optical Trapping (레이저 트위저 라만 분광을 이용한 펨토초 광포획 동안의 적혈구 손상 분석)

  • Ju, Seong-Bin;Pyo, Jin-U;Jang, Jae-Yeong;Lee, Seung-Deok;Kim, Beop-Min
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.453-454
    • /
    • 2008
  • femtosecond laser를 광원으로 하는 optical tweezers는 광포획 뿐만 아니라 비선형 현상을 발생시킬 수 있다는 장점을 가지고 있다. 그러나 높은 첨두 출력에 의하여 포획된 세포는 쉽게 손상되어 질 수 있다. 본 논문에서는 LTRS(Laser Tweezers Raman Spectroscopy)를 통하여 femtosecond laser와 CW laser에 의한 optical tweezers 상에서의 optical damage를 비교, 분석하였다.

  • PDF

Comparative Analysis of Repetitive Elements of Imprinting Genes Reveals Eleven Candidate Imprinting Genes in Cattle

  • Kim, HyoYoung;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.893-899
    • /
    • 2009
  • Few studies have reported the existence of imprinted genes in cattle compared to the human and mouse. Genomic imprinting is expressed in monoallelic form and it depends on a single parent-specific form of the allele. Comparative analysis of mammals other than the human is a valuable tool for explaining the genomic basis of imprinted genes. In this study, we investigated 34 common imprinted genes in the human and mouse as well as 35 known non-imprinted genes in the human. We found short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs), and long terminal repeats (LTRs) in imprinted (human and mouse) and control (cattle) genes. Pair-wise comparisons for the three species were conducted using SINEs, LINEs, and LTRs. We also calculated 95% confidence intervals of frequencies of repetitive sequences for the three species. As a result, most genes had a similar interval between species. We found 11 genes with conserved SINEs, LINEs, and LTRs in the human, mouse, and cattle. In conclusion, eleven genes (CALCR, Grb10, HTR2A, KCNK9, Kcnq1, MEST, OSBPL5, PPP1R9A, Sgce, SLC22A18, and UBE3A) were identified as candidate imprinted genes in cattle.

Identification and Characterization of New Copia-like Retrotransposon Osr1 in Rice

  • Lee, Yong-Hwan;Jwa, Nam-Soo;Park, Sook-Young;Park, Chan-Ho;Han, Seong-Sook
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • An insertion sequence identified as a solo long terminal repeat (LTR) of a new rice copia-like retrotransposon was detected in the ORE of the Pi-b gene from the rice cv. Nipponbare, and was designated as Osr1. Osr1 consists of a 6386 bp nucleotide sequence including 965 bp LTRs on both ends with an 82% nucleotide sequence identity to the wheat Tarl retrotransposon on reverse transcriptase. Nucleotide divergence was noted among the individual LTRs, as well as the coding region of Osr1. Various restriction fragment length polymorphism (RFLP) of LTR were detected in indica cultivars, whereas, only a few could be detected in the japonica cultivars. The population of Osr1 is lower in the wild-type rice compared with that in the domesticated cultivars. The insertion of LTR sequence in the h-b gene in the susceptible cultivar suggested that retro-tyansposon-mediated insertional mutation might play an important role in the resistance breakdown, as well as in the evolution of resistance genes in rice.

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes

  • Lee, Du Hyeong;Bae, Woo Hyeon;Ha, Hongseok;Park, Eun Gyung;Lee, Yun Ju;Kim, Woo Ryung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.522-530
    • /
    • 2022
  • Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.

Identification of hRad21-Binding Sites in Human Chromosome

  • Chin Chur;Chung Byung-Seon
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • The aim of this study is to identify hRad21-binding sites in human chromosome, the core component of cohesin complex that held sister chromatids together. After chromatin immunoprecipitation with an hRad21 antibody, it was cloned the recovered DNA and sequenced 30 independent clones. Among them, 20 clones (67%) contained repetitive elements including short interspersed transposable elements (SINE or Alu elements), long terminal repeat (LTR) and long interspersed transposable elements (LINE), fourteen of these twenty (70%) repeats clones had Alu elements, which could be categorized as the old and the young Alu Subfamily, eleven of the fourteen (73%) Alu elements belonged to the old Alu Subfamily, and only three Alu elements were categorized as young Alu subfamily. There is no CpG island within these selected clones. Association of hRad21 with Alu was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. The primers were designed in the flanking region of Alu, and the specific Alu element was shown in the selected clone. From these experiments, it was demonstrated that hRad21 could bind to SINE, LTRs, and LINE as well as Alu.

Identification and Molecular Characterization of PERV Gamma1 Long Terminal Repeats

  • Huh, Jae-Won;Kim, Dae-Soo;Ha, Hong-Seok;Ahn, Kung;Chang, Kyu-Tae;Cho, Byung-Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.119-123
    • /
    • 2009
  • Porcine endogenous retroviruses (PERVs) gamma1 in the pig genome have the potential to act as harmful factors in xenotransplantation (pig-to-human). Long terminal repeats (LTRs) are known to be strong promoter elements that could control the transcription activity of PERV elements and the adjacent functional genes. To investigate the transcribed PERV gamma1 LTR elements in pig tissues, bioinformatic and experimental approaches were conducted. Using RT-PCR amplification and sequencing approaches, 69 different transcribed LTR elements were identified. And 69 LTR elements could be divided into six groups (15 subgroups) by internal variation including tandem repeated sequences, insertion and deletion (INDEL). Remarkably, all internal variations were indentified in U3 region of LTR elements. Taken together, the identification and characterization of various PERV LTR transcripts allow us to extend our knowledge of PERV and its transcriptional study.

Functional Nucleotides of U5 LTR Determining Substrate Specificity of Prototype Foamy Virus Integrase

  • Kang, Seung-Yi;Ahn, Dog-Gn;Lee, Chan;Lee, Yong-Sup;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1044-1049
    • /
    • 2008
  • In order to study functional nucleotides in prototype foamy virus (PFV) DNA on specific recognition by PFV integrase (IN), we designed chimeric U5 long terminal repeat (LTR) DNA substrates by exchanging comparative sequences between human immunodeficiency virus type-1 (HIV-1) and PFV U5 LTRs, and investigated the 3'-end processing reactivity using HIV-1 and PFV INs, respectively. HIV-1 IN recognized the nucleotides present in the fifth and sixth positions at the 3'-end of the substrates more specifically than any other nucleotides in the viral DNA. However, PFV IN recognized the eighth and ninth nucleotides as distinctively as the fifth and sixth nucleotides in the reactions. In addition, none of the nucleotides present in the twelfth, sixteenth, seventeenth, eighteenth, nineteenth, and twentieth positions were not differentially recognized by HIV-1 and PFV INs, respectively. Therefore, our results suggest that the functional nucleotides that are specifically recognized by its own IN in the PFV U5 LTR are different from those in the HIV-1 U5 LTR in aspects of the positions and nucleotide sequences. Furthermore, it is proposed that the functional nucleotides related to the specific recognition by retroviral INs are present inside ten nucleotides from the 3'-end of the U5 LTR.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Human Brain cDNA Library and Xq21.3 Region

  • KIM, HEUI-SOO;TIMOTHY J. CRO
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.508-513
    • /
    • 2002
  • Human endogenous retroviral long terminal repeats (LTRs) have been found to be coexpressed with sequences of genes located nearby. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases. The HERV-W family has been identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Using a cDNA library derived from a human brain, the HERV-W LTR elements were examined and five new LTR elements were identified. These elements were examined using a YAC clone panel from the Xq21.3 region linked to psychosis that was replicated on the Y chromosome after the separation of the chimpanzee and human lineages. Fourteen elements of the HERV-W LTR were identified in that region. Those LTR elements showed a high degree of sequence similarity ($91.8-99.5\%$) with previously reported HERV-W LTR. A phylogenetic tree obtained from the neighbor-joining method revealed that new HERV-W LTR elements were closely related to the AXt000960, AF072504, and AF072506 from the GenBank database. The data indicates that several copy numbers of the HERV-W LTR elements exist on the Xq21.3 region and are also expressed in the human brain. These LTR elements need to be further investigated as potential leads to neuropsychiatric diseases.

Identification and Phylogeny of the Human Endogenous Retrovirus HERV-W LTR Family in Cancer Cells

  • Yi, Joo-Mi;Kim, Hwan-Mook;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.167-170
    • /
    • 2002
  • The long terminal repeats (LTRs) of human endogenous retrovirus (HERV) have been found to be coexpressed with sequences of closely located genes. It has been suggested that the LTR elements have contributed to the structural change or genetic variation of human genome connected to various diseases and evolution. We examined the HERV-W LTR elements in various cancer cells (2F7, A43l , A549, HepG2, MIA-PaCa-2, PC-3, RT4, SiHa, U-937, and UO-31). Using genomic DNA from the cancer cells, we performed PCR amplification and identified twelve new HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (88-99%) with HERV-W LTR (AF072500). A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-W LTR elements could be mainly divided into two groups through evolutionary divergence. Three HERV-W LTR elements (RT4-2, A43l-1, and UO3l-2) belonged to Group 1, whereas nine LTR elements (2F7-2, A549-1, A549-3, HepG2-3, MP2-2, PC3-1, SiHa-8, SiHa-10, and U937-1) belonged to Group 11. Taken together, our new sequence data of the HERV-W LTR elements may contribute to an understanding of tissue-specific cancer by genomic instability of LTR integration.