Browse > Article
http://dx.doi.org/10.5423/PPJ.2003.19.1.057

Identification and Characterization of New Copia-like Retrotransposon Osr1 in Rice  

Lee, Yong-Hwan (Department of Molecular Biology, College of Life Science, Sejong University)
Jwa, Nam-Soo (Department of Molecular Biology, College of Life Science, Sejong University)
Park, Sook-Young (School of Agricultural Biotechnology, Seoul National University)
Park, Chan-Ho (School of Agricultural Biotechnology, Seoul National University)
Han, Seong-Sook (Plant Pathology Division, National Institute of Agriculture Science and Technology)
Publication Information
The Plant Pathology Journal / v.19, no.1, 2003 , pp. 57-63 More about this Journal
Abstract
An insertion sequence identified as a solo long terminal repeat (LTR) of a new rice copia-like retrotransposon was detected in the ORE of the Pi-b gene from the rice cv. Nipponbare, and was designated as Osr1. Osr1 consists of a 6386 bp nucleotide sequence including 965 bp LTRs on both ends with an 82% nucleotide sequence identity to the wheat Tarl retrotransposon on reverse transcriptase. Nucleotide divergence was noted among the individual LTRs, as well as the coding region of Osr1. Various restriction fragment length polymorphism (RFLP) of LTR were detected in indica cultivars, whereas, only a few could be detected in the japonica cultivars. The population of Osr1 is lower in the wild-type rice compared with that in the domesticated cultivars. The insertion of LTR sequence in the h-b gene in the susceptible cultivar suggested that retro-tyansposon-mediated insertional mutation might play an important role in the resistance breakdown, as well as in the evolution of resistance genes in rice.
Keywords
LTR; Osr1; Pi-b; retrotransposon; RFLP; Tar;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Flavell, A J., Dunbar, E., Anderson, R., Pearce, S. R., Hartley, R. and Kumar, A. 1992. Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res. 20:3639-3644   DOI   ScienceOn
2 Hirochika, H. 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12:2521-2528
3 Hirochika, H. 1997. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol. 35:231-240   DOI   ScienceOn
4 Hirochika, H., Sugimoto, K, Otsuki, Y., Tsugawa, H. and Kanda, M. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783-7788   DOI   ScienceOn
5 Nakajima, R, Noma, K, Ohtsubo, H. and Ohtsubo, E. 1996. Identification and characterization of two tandem repeat sequences (TrsB and TrsC) and a retrotransposon (RIREl) as genome-general sequences in rice. Genes Genet. Syst. 71:373-382   DOI   ScienceOn
6 Rohlf, F. 1992. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Version 1.7. Exter Software, New York
7 Sneath, P. H. A and Sokal, R. R. 1973. Numerical Taxonomy: The Principle and Practice of Numerical Classification. W.H. Freeman and Co., San Francisco
8 Voytas, D. F., Cummings, M. P., Koniczny, A., Ausubel, F. M. and Rodermel, S. R. 1992. Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89:7124-7128   DOI   ScienceOn
9 Xiong, Y. and Eickbush, T. H. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9:3353-3362
10 Wessler, S. R., Bureau, T. E. and White, S. E. 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Current Opinion of Genet. and Develop. 5:814-821   DOI   ScienceOn
11 Noma, K., Nakajima, R, Ohtsubo, H. and Ohtsubo, E. 1997. RIREl, a retrotransposon from wild rice Oryza australiensis. Genes Genet. Syst. 72: 131-140   DOI   ScienceOn
12 Efron, G. and Gong, E 1983. A leisurely look at the bootstrap, the jackknife and cross-validation. Am. Stat. 37:36-48   DOI   ScienceOn
13 Sambrook, J., Frisch, E. F. and Maniatis, T. 1989. Molecularcloning. A laboratory Mannual 3rd edn. Cold Spring Habor Laboratory Press, Cold Spring Harbor
14 Yokoo, M., Kikuch, F., Fujimaki, H. and Nagai, K. 1978. Breeding of blast resistant lines (BL-l to 7) from indica-japonica crosses of rice. Jpn. J. Breed. 28:359-385   DOI
15 Pautot, V., Holzer, F. M., Reisch, B. and Walling, L. L. 1993. Leucine aminopeptidase: an inducible component of the defense response in Lycopersicon esculentum (tomato). Proc. Natl. Acad. Sci. USA 90:9906-9910   DOI   ScienceOn
16 Takeda, S., Sugimoto, K., Otsuki, H. and Hirochika, H. 1998. Transcriptional activation of the tobacco retrotransposon Ttol by wounding and methyl jasmonate. Plant Mol. Biol. 36:365-376   DOI   ScienceOn
17 Finnegan, D. J. 1989. Eukaryotic transposable elements and genome evolution. Trends in Genet. 5: 103-107   DOI   ScienceOn
18 Flor, H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275-296   DOI   ScienceOn
19 Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y. and Sasaki, T. 1999a. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19:55-64   DOI   ScienceOn
20 Grandbastien, M. A., Spielmann, A. and Caboche, M. 1989. TntI, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376-380   DOI   ScienceOn
21 Vernhettes, S., Grandbastien, M. A and Casacuberta, J. M. 1997. In vivo characterization of transcriptional regulatory sequences involved in the defence-associated expression of the tobacco retrotransposon Tntl. Plant Mol. BioI. 35:673-679   DOI   ScienceOn
22 Jwa, N. S., Park, S. G., Park, C. H., Kim, S. O., Ahn, I.P., Park, S. Y., Yoon, C. H. and Lee, Y. H. 2000b. Cloning and expression of a rice cDNA encoding a Lls1 homologue of Maize. Plant Pathol. J. 16:151-155
23 Wang, S., Zhang, Q., Maughan, P. J. and Saghai, M. A. 1997. Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal locations. Plant Mol. BioI. 33:1051-1058   DOI   ScienceOn
24 Pouteau, S., Grandbastien, M. A. and Bpccara, M. 1994. Microbial elicitors of plant defense responses activate transcription of a retrotransposon. Plant J. 5:535-542   DOI   ScienceOn
25 Matsuoka, Y. and Tsunewaki, K. 1997. Presence of wheat retrotransposons in Gramineae species and the origin of wheat retrotransposon families. Genes Genet. Syst. 72:335-343   DOI   ScienceOn
26 Wang, S., Liu, N., Peng, K. and Zhang, Q. 1999b. The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome. Proc. Natl. Acad. Sci. USA 96:6824-6828   DOI   ScienceOn
27 Weil, C. F. and Wessler, S. R. 1990. The effects of plant transposable elements insertion on transcription initiation and RNA processing. Ann Rev Plant Physiol. Plant Mol. Biol. 41 :527-552   DOI   ScienceOn
28 Rogers, S. O. and Bendich, A J. 1985. Extraction of DNA milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. BioI. 5:69-76   DOI   ScienceOn
29 Vaughan, D. H. 1994. The relationship between the genus Oryza and other grasses. In The Wild Relatives ofRice, pp. 3-6. International Rice Research Institute. Philippines
30 Jwa, N. S. and Lee, Y. H. 2000a. Insertional mutation of the rice blast resistance gene, Pi-b, by long terminal repeat of a retrotransposon. Plant Pathol. J. 16:105-109
31 McClintock, B. 1984. The significance of responses of the genome to challenge. Science 226:792-801   DOI   PUBMED