Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0060

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes  

Lee, Du Hyeong (Department of Integrated Biological Sciences, Pusan National University)
Bae, Woo Hyeon (Department of Integrated Biological Sciences, Pusan National University)
Ha, Hongseok (Division of Life Sciences, Korea University)
Park, Eun Gyung (Department of Integrated Biological Sciences, Pusan National University)
Lee, Yun Ju (Department of Integrated Biological Sciences, Pusan National University)
Kim, Woo Ryung (Department of Integrated Biological Sciences, Pusan National University)
Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Abstract
Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.
Keywords
gene function; human diseases; human endogenous retrovirus; long terminal repeat elements; Z-DNA;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Akopov, S.B., Nikolaev, L.G., Khil, P.P., Lebedev, Y.B., and Sverdlov, E.D. (1998). Long terminal repeats of repeats of human endogenous retrovirus K family (HERV-K) specifically bind host cell nuclear proteins. FEBS Lett. 421, 229-233.   DOI
2 Beknazarov, N., Jin, S., and Poptsova, M. (2020). Deep learning approach for predicting functional Z-DNA regions using omics data. Sci. Rep. 10, 19134.
3 Abbasifard, M., Kamiab, Z., Bagheri-Hosseinabadi, Z., and Sadeghi, I. (2020). The role and function of long non-coding RNAs in osteoarthritis. Exp. Mol. Pathol. 114, 104407.
4 Ali, M.M., Marco, M.D., Mahale, S., Jachimowicz, D., Kosalai, S.T., Reischl, S., Statello, L., Mishra, K., Darnfors, C., Kanduri, M., et al. (2021). LY6K-AS lncRNA is a lung adenocarcinoma prognostic biomarker and regulator of mitotic progression. Oncogene 40, 2463-2478.   DOI
5 Anderssen, S., Sjottem, E., Svineng, G., and Johansen, T. (1997). Comparative analyses of LTRs of the ERV-H family of primate-specific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology 234, 14-30.   DOI
6 Lower, R., Lower, J., and Kurth, R. (1996). The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. U. S. A.9 3, 5177-5184.   DOI
7 Luo, J., Luo, X., Duan, Z., Bai, W., Che, X., Shan, Z., Li, X., and Peng, J. (2021). Comprehensive analysis of lncRNA and mRNA based on expression microarray profiling reveals different characteristics of osteoarthritis between Tibetan and Han patients. J. Orthop. Surg. Res. 16, 133.
8 Macfarlane, C. and Simmonds, P. (2004). Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J. Mol. Evol. 59, 642-656.   DOI
9 Medstrand, P., Landry, J.R., and Mager, D.L. (2001). Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem. 276, 1896-1903.   DOI
10 Montension, M., Williams, Z.H., Subramanian, R.P., Kuperwasser, C., and Coffin, J.M. (2018). Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites. Retrovirology 15, 57.
11 Patzke, S., Lindeskog, M., Munthe, E., and Aasheim, H.C. (2002). Characterization of a novel human endogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines. Virology 303, 164-173.   DOI
12 Perron, H., Garson, J., Bedin, F., Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F., Mallet, F., Tuke, P.W., Voisset, C., Blond, J.L., et al. (1997). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A. 94, 7583-7588.   DOI
13 Medstrand, P. and Mager, D.L. (1998). Human-specific integrations of the HERV-K endogenous retrovirus family. J. Virol. 72, 9782-9787.   DOI
14 Lavie, L., Medstrand, P., Schempp, W., Meese, E., and Mayer, J. (2004). Human endogenous retrovirus family HERV-K (HML-5): status, evolution, and reconstruction of an ancient betaretrovirus in the human genome. J. Virol. 78, 8788-8798.   DOI
15 Kim, Y.J., Huh, J.W., Kim, D.S., Han, K., Kim, H.M., and Kim, H.S. (2011). Evolutionary diversification of DYX1C1 transcripts via an HERV-H LTR integration event. Genes Genet. Syst. 86, 277-284.   DOI
16 Kowalski, P.E., Freeman, J.D., and Mager, D.L. (1999). Intergenic splicing between a HERV-H endogenous retrovirus and two adjacent human genes. Genomics 57, 371-379.   DOI
17 Kowalski, P.E. and Mager, D.L. (1998). A human endogenous retrovirus suppresses translation of an associated fusion transcript, PLA2L. J. Virol. 72, 6164-6168.   DOI
18 Lee, J.W. and Kim, H.S. (2006). Endogenous retrovirus HERV-I LTR family in primates: sequences, phylogeny, and evolution. Arch. Virol. 151, 1651-1658.   DOI
19 Li, H., Xiao, J., Li, J., Lu, L., Feng, S., and Droge, P. (2009). Human genomic Z-DNA segments probed by the Z alpha domain of ADAR1. Nucleic Acids Res. 37, 2737-2746.   DOI
20 Li, Y.L., Wu, L.W., Zeng, L.H., Zhang, Z.Y., Wang, W., Zhang, C., and Lin, N.M. (2020). ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3. Oncogene 39, 6203-6217.   DOI
21 Kim, Y.J., Huh, J.W., Kim, D.S., Bae, M.I., Lee, J.R., Ha, H.S., Ahn, K., Kim, T.O., Song, G.A., and Kim, H.S. (2009). Molecular characterization of the DYX1C1 gene and its application as a cancer biomarker. J. Cancer Res. Clin. Oncol. 135, 265-270.   DOI
22 Liu, L.F. and Wang, J.C. (1987). Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U. S. A. 84, 7024-7027.   DOI
23 Di Cristofano, A., Strazzullo, M., Longo, L., and La Mantia, G. (1995). Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retrovrial family. Nucleic Acids Res. 23, 2823-2830.   DOI
24 Ahn, K., Huh, J.W., Kim, D.S., Ha, H.S., Kim, Y.J., Lee, J.R., and Kim, H.S. (2010). Quantitative analysis of alternative transcripts of human PCDH11X/Y genes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 736-744.
25 Ahn, K. and Kim, H.S. (2009). Structural and quantitative expression analyses of HERV gene family in human tissues. Mol. Cells2 8, 99-103.
26 Bayele, H.K., Peyssonnaux, C., Giatromanolaki, A., Arrais-Silva, W.W., Mohamed, H.S., Collins, H., Giorgio, S., Koukourakis, M., Hohnson, R.S., Blackwell, J.M., et al. (2007). HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA-forming microsatellite. Blood 110, 3039-3048.
27 Buzdin, A., Khodosevich, K., Mamedov, I., Vinogradova, T., Lebedev, Y., Hunsmann, G., and Sverdlov, E. (2002). A technique for genome-wide identification of differences in the interspersed repeats integrations between closely related genomes and its application to detection of human-specific integration of HERV-K LTRs. Genomics 79, 413-422.   DOI
28 Dickerson, R.E., Drew, H.R., Conner, B.C., Wing, R.M., Fratini, A.V., and Kopka, M.L. (1982). The anatomy of A-, B-, and Z-DNA. Science 216, 475-485.   DOI
29 Durnaoglu, S., Lee, S.K., and Ahnn, J. (2021). Human endogenous retroviruses as gene expression regulators: insights from animal models into human diseases. Mol. Cells 44, 861-878.   DOI
30 Blaho, J.A. and Wells, R.D. (1989). Left-handed Z-DNA and genetic recombination. Prog. Nucleic Acid Res. Mol. Biol. 37, 107-126.   DOI
31 Ha, H.S., Huh, J.W., Gim, J.A., Han, K., and Kim, H.S. (2011). Transcriptional variations mediated by an alternative promoter of the FPR3 gene. Mamm. Genome 22, 621-633.   DOI
32 Sverdlov, E.D. (2000). Retroviruses and primate evolution. Bioessays 22, 161-171.   DOI
33 Havecker, E.R., Gao, X., and Voytas, D.F. (2004). The diversity of LTR retrotransposons. Genome Biol. 5, 225.
34 Herbert, A. (2019). Z-DNA and Z-RNA in human disease. Commun. Biol. 2, 7.
35 Herve, C.A., Forrest, G., Lower, R., Griffiths, D.J., and Venables, P.J.W. (2004). Conservation and loss of the ERV3 open reading frame in primates. Genomics 83, 940-943.   DOI
36 Shin, S.I., Ham, S., Park, J., Seo, S.H., Lim, C.H., Jeon, H., Huh, J., and Roh, T.Y. (2016). Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. DNA Res. 23, 477-486.   DOI
37 Sin, H.S., Huh, J.W., Kim, D.S., Kang, D.W., Min, D.S., Kim, T.H., Ha, H.S., Kim, H.H., Lee, S.Y., and Kim, H.S. (2006). Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch. Virol. 151, 1985-1994.   DOI
38 Thomas, J., Perron, H., and Feschotte, C. (2018). Variation in proviral content among human genomes mediated by LTR recombination. Mob. DNA 9, 36.
39 Wahls, W.P., Wallace, L.J., and Moore, P.D. (1990). The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol. Cell. Biol. 10, 785-793.
40 Wang, A.J., Quigley, G.J., Kolpak, F.J., van der Marel, G., van Boom, J.H., and Rich, A. (1981). Left-handed double helical DNA: variations in the backbone conformation. Science 211, 171-176.   DOI
41 Xiao, H. and Xu, Y. (2021). Overexpression of apolipoprotein C1 (APOC1) in clear cell renal cell carcinoma and its prognostic significance. Med. Sci. Monit. 27, e929347.
42 Yi, J.M. and Kim, H.S. (2007a). Expression and phylogenetic analyses of human endogenous retrovirus HC2 belonging to the HERV-T family in human tissues and cancer cells. J. Hum. Genet. 52, 285-296.   DOI
43 Yi, J.M. and Kim, H.S. (2007b). Molecular phylogenetic analysis of the human endogenous retrovirus E (HERV-E) family in human tissues and human cancers. Genes Genet. Syst. 82, 89-98.   DOI
44 Jacox, E., Gotea, V., Ovcharenko, I., and Elnitski, L. (2010). Tissue-specific and ubiquitous expression patterns from alternative promoters of human genes. PLoS One 5, e12274.
45 Ho, P.S., Ellison, M.J., Quigley, G.J., and Rich, A. (1986). A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J. 5, 2737-2744.   DOI
46 Huh, J.W., Kim, D.S., Ha, H.S., Kim, T.H., Kim, W., and Kim, H.S. (2006). Formation of a new solo-LTR of the human endogenous retrovirus H family in human chromosome 21. Mol. Cells 22, 360-363.
47 Ito, J., Sugimoto, R., Nakaoka, H., Yamada, S., Kimura, T., Hayano, T., and Inoue, I. (2017). Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 13, e1006883.
48 Jern, P. and Coffin, J.M. (2008). Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709-732.   DOI
49 Jung, Y.D., Huh, J.W., Kim, D.S., Kim, Y.J., Ahn, K., Ha, H.S., Lee, J.R., Yi, J.M., Moon, J.W., Kim, T.O., et al. (2011). Quantitative analysis of transcript variants of CHM gene containing LTR12C element in humans. Gene 489, 1-5.   DOI
50 Jung, Y.D., Lee, H.E., Jo, A., Hiroo, I., Cha, H.J., and Kim, H.S. (2017). Activity analysis of LTR12C as an effective regulatory element of the RAE1 gene. Gene 634, 22-28.   DOI
51 Karlsson, H., Bachmann, S., Schroder, J., McArthur, J., Torrey, E.F., and Yolken, R.H. (2001). Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 98, 4634-4639.   DOI
52 Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res. 12, 996-1006.   DOI
53 Qi, H., Chi, L., Wang, X., Jin, X., Wang, W., and Lan, J. (2021). Identification of a seven-lncRNA-mRNA signature for recurrence and prognostic prediction in relapsed acute lymphoblastic leukemia based on WGCNA and LASSO analyses. Anal. Cell. Pathol. (Amst.) 2021, 6692022.
54 Ruda, V.M., Akopov, S.B., Trubetskoy, D.O., Manuylov, N.L., Vetchinova, A.S., Zavalova, L.L., Nikolaev, L.G., and Sverdlov, E.D. (2004). Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res. 104, 11-16.   DOI
55 Schroth, G.P., Chou, P.J., and Ho, P.S. (1992). Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J. Biol. Chem. 267, 11846-11855.   DOI
56 Sorek, R. (2007). The birth of new exons: mechanismsand evolutionary consequences. RNA 13, 1603-1608.   DOI
57 Rosin, G., Hannelius, U., Lindstrom, L., Hall, P., Bergh, J., Hartman, J., and Kere, J. (2012). The dyslexia candidate gene DYX1C1 is a potential marker of poor survival in breast cancer. BMC Cancer 12, 79.
58 Kim, H.S., Takenaka, O., and Crow, T.J. (1999a). Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J. Gen. Virol. 80, 2613-2619.   DOI
59 Kamp, C., Hirschmann, P., Voss, H., Huellen, K., and Vogt, P.H. (2000). Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum. Mol. Genet. 9, 2563-2572.   DOI
60 Kim, H.S. (2012). Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol. Cells 33, 539-544.   DOI
61 Kim, T.H., Jeon, Y.J., Yi, J.M., Kim, D.S., Huh, J.W., Hur, C.G., and Kim, H.S. (2004). The distribution and expression of HERV families in the human genome. Mol. Cells 18, 87-93.
62 Kjellman, C., Sjogren, H.O., and Widegren, B. (1999). HERV-F, a new group of human endogenous retrovirus sequences. J. Gen. Virol. 80, 2383-2392.   DOI
63 Landry, J.R., Mager, D.L., and Wilhelm, B.T. (2003). Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet. 19, 640-648.   DOI
64 Schon, U., Diem, O., Leitner, L., Gunzburg, W.H., Mager, D.L., Salmons, B., and Leib-Mosch, C. (2009). Human endogenous retroviral long terminal repeat sequences as cell type-specific promoters in retroviral vectors. J. Virol. 83, 12643-12650.   DOI
65 Schon, U., Seifarth, W., Baust, C., Hohenadl, C., Erfle, V., and Leib-Mosch, C. (2001). Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279, 280-291.   DOI
66 Yi, J.M., Kim, T.H., Huh, J.W., Park, K.S., Jang, S.B., Kim, H.M., and Kim, H.S. (2004). Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342, 283-292.   DOI
67 Drew, H., Takano, T., Tanaka, S., Itakura, K., and Dickerson, R.E. (1980). High-salt d(CpGpCpG), a left-handed Z-DNA double helix. Nature 286, 567-573.   DOI
68 Ray, B.K., Dhar, S., Shakya, A., and Ray, A. (2011). Z-DNA-forming silencer in the first exon regulates human ADAM-12 gene expression. Proc. Natl. Acad. Sci. U. S. A. 108, 103-108.   DOI
69 Bieche, I., Laurent, A., Laurendeau, I., Duret, L., Giovangrandi, Y., Frendo, J.L., Olivi, M., Fausser, J.L., Evain-Brion, D., and Vidaud, M. (2003). Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol. Reprod. 68, 1422-1429.   DOI
70 Conrad, B., Weissmahr, R.N., Boni, J., Arcari, R., Schupbach, J., and Mach, B. (1997). A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 90, 303-313.   DOI
71 Hamada, H., Petrino, M.G., and Kakunaga, T. (1982). A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. U. S. A.7 9, 6465-6469.   DOI
72 Herbert, A. and Rich, A. (2001). The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc. Natl. Acad. Sci. U. S. A. 98, 12132-12137.   DOI
73 Huh, J.W., Kim, D.S., Kang, D.W., Ha, H.S., Ahn, K., Noh, Y.N., Min, D.S., Chang, K.T., and Kim, H.S. (2008). Transcriptional regulation of GSDML gene by antisense-oriented HERV-H LTR element. Arch. Virol. 153, 1201-1205.   DOI
74 Kim, H.S., Wadekar, R.V., Takenaka, O., Winstanley, C., Mitsunaga, F., Kageyama, T., Hyun, B.H., and Crow, T.J. (1999b). SINE-R.C2 (a Homo sapiens specific retroposon) is homologous to cDNA from postmortem brain in schizophrenia and to two loci in the Xq21.3/Yp block linked to handedness and psychosis. Am. J. Med. Genet. 88, 560-566.   DOI
75 Zimmer, C., Tymen, S., Marck, C., and Guschlbauer, W. (1982). Conformational transitions of poly(dA-dC) (poly(dG-dT) induced by high salt or in ethanolic solution. Nucleic Acids Res. 10, 1081-1091.   DOI
76 Yi, J.M., Schuebel, K., and Kim, H.S. (2007c). Molecular genetic analyses of human endogenous retroviral elements belonging to the HERV-P family in primates, human tissues, and cancer cells. Genomics 89, 1-9.   DOI
77 Yu, H.L., Zhao, Z.K., and Zhu, F. (2013). The role of human endogenous retroviral long terminal repeat sequences in human cancer. Int. J. Mol. Med. 32, 755-762.   DOI