DOI QR코드

DOI QR Code

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes

  • Lee, Du Hyeong (Department of Integrated Biological Sciences, Pusan National University) ;
  • Bae, Woo Hyeon (Department of Integrated Biological Sciences, Pusan National University) ;
  • Ha, Hongseok (Division of Life Sciences, Korea University) ;
  • Park, Eun Gyung (Department of Integrated Biological Sciences, Pusan National University) ;
  • Lee, Yun Ju (Department of Integrated Biological Sciences, Pusan National University) ;
  • Kim, Woo Ryung (Department of Integrated Biological Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2022.04.11
  • Accepted : 2022.05.31
  • Published : 2022.08.31

Abstract

Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.

Keywords

Acknowledgement

This work was supported by a two-year research grant from Pusan National University.

References

  1. Abbasifard, M., Kamiab, Z., Bagheri-Hosseinabadi, Z., and Sadeghi, I. (2020). The role and function of long non-coding RNAs in osteoarthritis. Exp. Mol. Pathol. 114, 104407.
  2. Ahn, K., Huh, J.W., Kim, D.S., Ha, H.S., Kim, Y.J., Lee, J.R., and Kim, H.S. (2010). Quantitative analysis of alternative transcripts of human PCDH11X/Y genes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 736-744.
  3. Ahn, K. and Kim, H.S. (2009). Structural and quantitative expression analyses of HERV gene family in human tissues. Mol. Cells2 8, 99-103.
  4. Ali, M.M., Marco, M.D., Mahale, S., Jachimowicz, D., Kosalai, S.T., Reischl, S., Statello, L., Mishra, K., Darnfors, C., Kanduri, M., et al. (2021). LY6K-AS lncRNA is a lung adenocarcinoma prognostic biomarker and regulator of mitotic progression. Oncogene 40, 2463-2478. https://doi.org/10.1038/s41388-021-01696-7
  5. Anderssen, S., Sjottem, E., Svineng, G., and Johansen, T. (1997). Comparative analyses of LTRs of the ERV-H family of primate-specific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology 234, 14-30. https://doi.org/10.1006/viro.1997.8590
  6. Akopov, S.B., Nikolaev, L.G., Khil, P.P., Lebedev, Y.B., and Sverdlov, E.D. (1998). Long terminal repeats of repeats of human endogenous retrovirus K family (HERV-K) specifically bind host cell nuclear proteins. FEBS Lett. 421, 229-233. https://doi.org/10.1016/S0014-5793(97)01569-X
  7. Bayele, H.K., Peyssonnaux, C., Giatromanolaki, A., Arrais-Silva, W.W., Mohamed, H.S., Collins, H., Giorgio, S., Koukourakis, M., Hohnson, R.S., Blackwell, J.M., et al. (2007). HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA-forming microsatellite. Blood 110, 3039-3048.
  8. Beknazarov, N., Jin, S., and Poptsova, M. (2020). Deep learning approach for predicting functional Z-DNA regions using omics data. Sci. Rep. 10, 19134.
  9. Bieche, I., Laurent, A., Laurendeau, I., Duret, L., Giovangrandi, Y., Frendo, J.L., Olivi, M., Fausser, J.L., Evain-Brion, D., and Vidaud, M. (2003). Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol. Reprod. 68, 1422-1429. https://doi.org/10.1095/biolreprod.102.010322
  10. Blaho, J.A. and Wells, R.D. (1989). Left-handed Z-DNA and genetic recombination. Prog. Nucleic Acid Res. Mol. Biol. 37, 107-126. https://doi.org/10.1016/S0079-6603(08)60696-0
  11. Buzdin, A., Khodosevich, K., Mamedov, I., Vinogradova, T., Lebedev, Y., Hunsmann, G., and Sverdlov, E. (2002). A technique for genome-wide identification of differences in the interspersed repeats integrations between closely related genomes and its application to detection of human-specific integration of HERV-K LTRs. Genomics 79, 413-422. https://doi.org/10.1006/geno.2002.6705
  12. Conrad, B., Weissmahr, R.N., Boni, J., Arcari, R., Schupbach, J., and Mach, B. (1997). A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 90, 303-313. https://doi.org/10.1016/S0092-8674(00)80338-4
  13. Dickerson, R.E., Drew, H.R., Conner, B.C., Wing, R.M., Fratini, A.V., and Kopka, M.L. (1982). The anatomy of A-, B-, and Z-DNA. Science 216, 475-485. https://doi.org/10.1126/science.7071593
  14. Di Cristofano, A., Strazzullo, M., Longo, L., and La Mantia, G. (1995). Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retrovrial family. Nucleic Acids Res. 23, 2823-2830. https://doi.org/10.1093/nar/23.15.2823
  15. Drew, H., Takano, T., Tanaka, S., Itakura, K., and Dickerson, R.E. (1980). High-salt d(CpGpCpG), a left-handed Z-DNA double helix. Nature 286, 567-573. https://doi.org/10.1038/286567a0
  16. Durnaoglu, S., Lee, S.K., and Ahnn, J. (2021). Human endogenous retroviruses as gene expression regulators: insights from animal models into human diseases. Mol. Cells 44, 861-878. https://doi.org/10.14348/molcells.2021.5016
  17. Ha, H.S., Huh, J.W., Gim, J.A., Han, K., and Kim, H.S. (2011). Transcriptional variations mediated by an alternative promoter of the FPR3 gene. Mamm. Genome 22, 621-633. https://doi.org/10.1007/s00335-011-9341-7
  18. Hamada, H., Petrino, M.G., and Kakunaga, T. (1982). A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. U. S. A.7 9, 6465-6469. https://doi.org/10.1073/pnas.79.21.6465
  19. Havecker, E.R., Gao, X., and Voytas, D.F. (2004). The diversity of LTR retrotransposons. Genome Biol. 5, 225.
  20. Herbert, A. (2019). Z-DNA and Z-RNA in human disease. Commun. Biol. 2, 7.
  21. Herbert, A. and Rich, A. (2001). The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc. Natl. Acad. Sci. U. S. A. 98, 12132-12137. https://doi.org/10.1073/pnas.211419898
  22. Herve, C.A., Forrest, G., Lower, R., Griffiths, D.J., and Venables, P.J.W. (2004). Conservation and loss of the ERV3 open reading frame in primates. Genomics 83, 940-943. https://doi.org/10.1016/j.ygeno.2003.10.003
  23. Ho, P.S., Ellison, M.J., Quigley, G.J., and Rich, A. (1986). A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J. 5, 2737-2744. https://doi.org/10.1002/j.1460-2075.1986.tb04558.x
  24. Huh, J.W., Kim, D.S., Kang, D.W., Ha, H.S., Ahn, K., Noh, Y.N., Min, D.S., Chang, K.T., and Kim, H.S. (2008). Transcriptional regulation of GSDML gene by antisense-oriented HERV-H LTR element. Arch. Virol. 153, 1201-1205. https://doi.org/10.1007/s00705-008-0105-y
  25. Huh, J.W., Kim, D.S., Ha, H.S., Kim, T.H., Kim, W., and Kim, H.S. (2006). Formation of a new solo-LTR of the human endogenous retrovirus H family in human chromosome 21. Mol. Cells 22, 360-363.
  26. Ito, J., Sugimoto, R., Nakaoka, H., Yamada, S., Kimura, T., Hayano, T., and Inoue, I. (2017). Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 13, e1006883.
  27. Jacox, E., Gotea, V., Ovcharenko, I., and Elnitski, L. (2010). Tissue-specific and ubiquitous expression patterns from alternative promoters of human genes. PLoS One 5, e12274.
  28. Jern, P. and Coffin, J.M. (2008). Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709-732. https://doi.org/10.1146/annurev.genet.42.110807.091501
  29. Jung, Y.D., Huh, J.W., Kim, D.S., Kim, Y.J., Ahn, K., Ha, H.S., Lee, J.R., Yi, J.M., Moon, J.W., Kim, T.O., et al. (2011). Quantitative analysis of transcript variants of CHM gene containing LTR12C element in humans. Gene 489, 1-5. https://doi.org/10.1016/j.gene.2011.09.001
  30. Jung, Y.D., Lee, H.E., Jo, A., Hiroo, I., Cha, H.J., and Kim, H.S. (2017). Activity analysis of LTR12C as an effective regulatory element of the RAE1 gene. Gene 634, 22-28. https://doi.org/10.1016/j.gene.2017.08.037
  31. Kamp, C., Hirschmann, P., Voss, H., Huellen, K., and Vogt, P.H. (2000). Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum. Mol. Genet. 9, 2563-2572. https://doi.org/10.1093/hmg/9.17.2563
  32. Karlsson, H., Bachmann, S., Schroder, J., McArthur, J., Torrey, E.F., and Yolken, R.H. (2001). Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 98, 4634-4639. https://doi.org/10.1073/pnas.061021998
  33. Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res. 12, 996-1006. https://doi.org/10.1101/gr.229102
  34. Kim, H.S. (2012). Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol. Cells 33, 539-544. https://doi.org/10.1007/s10059-012-0037-y
  35. Kim, H.S., Takenaka, O., and Crow, T.J. (1999a). Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J. Gen. Virol. 80, 2613-2619. https://doi.org/10.1099/0022-1317-80-10-2613
  36. Kim, H.S., Wadekar, R.V., Takenaka, O., Winstanley, C., Mitsunaga, F., Kageyama, T., Hyun, B.H., and Crow, T.J. (1999b). SINE-R.C2 (a Homo sapiens specific retroposon) is homologous to cDNA from postmortem brain in schizophrenia and to two loci in the Xq21.3/Yp block linked to handedness and psychosis. Am. J. Med. Genet. 88, 560-566. https://doi.org/10.1002/(SICI)1096-8628(19991015)88:5<560::AID-AJMG23>3.0.CO;2-W
  37. Kim, T.H., Jeon, Y.J., Yi, J.M., Kim, D.S., Huh, J.W., Hur, C.G., and Kim, H.S. (2004). The distribution and expression of HERV families in the human genome. Mol. Cells 18, 87-93.
  38. Kim, Y.J., Huh, J.W., Kim, D.S., Bae, M.I., Lee, J.R., Ha, H.S., Ahn, K., Kim, T.O., Song, G.A., and Kim, H.S. (2009). Molecular characterization of the DYX1C1 gene and its application as a cancer biomarker. J. Cancer Res. Clin. Oncol. 135, 265-270. https://doi.org/10.1007/s00432-008-0445-8
  39. Kim, Y.J., Huh, J.W., Kim, D.S., Han, K., Kim, H.M., and Kim, H.S. (2011). Evolutionary diversification of DYX1C1 transcripts via an HERV-H LTR integration event. Genes Genet. Syst. 86, 277-284. https://doi.org/10.1266/ggs.86.277
  40. Kjellman, C., Sjogren, H.O., and Widegren, B. (1999). HERV-F, a new group of human endogenous retrovirus sequences. J. Gen. Virol. 80, 2383-2392. https://doi.org/10.1099/0022-1317-80-9-2383
  41. Kowalski, P.E., Freeman, J.D., and Mager, D.L. (1999). Intergenic splicing between a HERV-H endogenous retrovirus and two adjacent human genes. Genomics 57, 371-379. https://doi.org/10.1006/geno.1999.5787
  42. Kowalski, P.E. and Mager, D.L. (1998). A human endogenous retrovirus suppresses translation of an associated fusion transcript, PLA2L. J. Virol. 72, 6164-6168. https://doi.org/10.1128/JVI.72.7.6164-6168.1998
  43. Landry, J.R., Mager, D.L., and Wilhelm, B.T. (2003). Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet. 19, 640-648. https://doi.org/10.1016/j.tig.2003.09.014
  44. Lavie, L., Medstrand, P., Schempp, W., Meese, E., and Mayer, J. (2004). Human endogenous retrovirus family HERV-K (HML-5): status, evolution, and reconstruction of an ancient betaretrovirus in the human genome. J. Virol. 78, 8788-8798. https://doi.org/10.1128/JVI.78.16.8788-8798.2004
  45. Lee, J.W. and Kim, H.S. (2006). Endogenous retrovirus HERV-I LTR family in primates: sequences, phylogeny, and evolution. Arch. Virol. 151, 1651-1658. https://doi.org/10.1007/s00705-006-0733-z
  46. Li, H., Xiao, J., Li, J., Lu, L., Feng, S., and Droge, P. (2009). Human genomic Z-DNA segments probed by the Z alpha domain of ADAR1. Nucleic Acids Res. 37, 2737-2746. https://doi.org/10.1093/nar/gkp124
  47. Li, Y.L., Wu, L.W., Zeng, L.H., Zhang, Z.Y., Wang, W., Zhang, C., and Lin, N.M. (2020). ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3. Oncogene 39, 6203-6217. https://doi.org/10.1038/s41388-020-01428-3
  48. Liu, L.F. and Wang, J.C. (1987). Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U. S. A. 84, 7024-7027. https://doi.org/10.1073/pnas.84.20.7024
  49. Lower, R., Lower, J., and Kurth, R. (1996). The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. U. S. A.9 3, 5177-5184. https://doi.org/10.1073/pnas.93.11.5177
  50. Luo, J., Luo, X., Duan, Z., Bai, W., Che, X., Shan, Z., Li, X., and Peng, J. (2021). Comprehensive analysis of lncRNA and mRNA based on expression microarray profiling reveals different characteristics of osteoarthritis between Tibetan and Han patients. J. Orthop. Surg. Res. 16, 133.
  51. Macfarlane, C. and Simmonds, P. (2004). Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J. Mol. Evol. 59, 642-656. https://doi.org/10.1007/s00239-004-2656-1
  52. Medstrand, P., Landry, J.R., and Mager, D.L. (2001). Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem. 276, 1896-1903. https://doi.org/10.1074/jbc.M006557200
  53. Medstrand, P. and Mager, D.L. (1998). Human-specific integrations of the HERV-K endogenous retrovirus family. J. Virol. 72, 9782-9787. https://doi.org/10.1128/JVI.72.12.9782-9787.1998
  54. Montension, M., Williams, Z.H., Subramanian, R.P., Kuperwasser, C., and Coffin, J.M. (2018). Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites. Retrovirology 15, 57.
  55. Patzke, S., Lindeskog, M., Munthe, E., and Aasheim, H.C. (2002). Characterization of a novel human endogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines. Virology 303, 164-173. https://doi.org/10.1006/viro.2002.1615
  56. Perron, H., Garson, J., Bedin, F., Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F., Mallet, F., Tuke, P.W., Voisset, C., Blond, J.L., et al. (1997). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A. 94, 7583-7588. https://doi.org/10.1073/pnas.94.14.7583
  57. Qi, H., Chi, L., Wang, X., Jin, X., Wang, W., and Lan, J. (2021). Identification of a seven-lncRNA-mRNA signature for recurrence and prognostic prediction in relapsed acute lymphoblastic leukemia based on WGCNA and LASSO analyses. Anal. Cell. Pathol. (Amst.) 2021, 6692022.
  58. Ray, B.K., Dhar, S., Shakya, A., and Ray, A. (2011). Z-DNA-forming silencer in the first exon regulates human ADAM-12 gene expression. Proc. Natl. Acad. Sci. U. S. A. 108, 103-108. https://doi.org/10.1073/pnas.1008831108
  59. Rosin, G., Hannelius, U., Lindstrom, L., Hall, P., Bergh, J., Hartman, J., and Kere, J. (2012). The dyslexia candidate gene DYX1C1 is a potential marker of poor survival in breast cancer. BMC Cancer 12, 79.
  60. Ruda, V.M., Akopov, S.B., Trubetskoy, D.O., Manuylov, N.L., Vetchinova, A.S., Zavalova, L.L., Nikolaev, L.G., and Sverdlov, E.D. (2004). Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res. 104, 11-16. https://doi.org/10.1016/j.virusres.2004.02.036
  61. Schon, U., Diem, O., Leitner, L., Gunzburg, W.H., Mager, D.L., Salmons, B., and Leib-Mosch, C. (2009). Human endogenous retroviral long terminal repeat sequences as cell type-specific promoters in retroviral vectors. J. Virol. 83, 12643-12650. https://doi.org/10.1128/JVI.00858-09
  62. Schon, U., Seifarth, W., Baust, C., Hohenadl, C., Erfle, V., and Leib-Mosch, C. (2001). Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279, 280-291. https://doi.org/10.1006/viro.2000.0712
  63. Schroth, G.P., Chou, P.J., and Ho, P.S. (1992). Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J. Biol. Chem. 267, 11846-11855. https://doi.org/10.1016/S0021-9258(19)49776-7
  64. Shin, S.I., Ham, S., Park, J., Seo, S.H., Lim, C.H., Jeon, H., Huh, J., and Roh, T.Y. (2016). Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. DNA Res. 23, 477-486. https://doi.org/10.1093/dnares/dsw031
  65. Sin, H.S., Huh, J.W., Kim, D.S., Kang, D.W., Min, D.S., Kim, T.H., Ha, H.S., Kim, H.H., Lee, S.Y., and Kim, H.S. (2006). Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch. Virol. 151, 1985-1994. https://doi.org/10.1007/s00705-006-0764-5
  66. Sorek, R. (2007). The birth of new exons: mechanismsand evolutionary consequences. RNA 13, 1603-1608. https://doi.org/10.1261/rna.682507
  67. Sverdlov, E.D. (2000). Retroviruses and primate evolution. Bioessays 22, 161-171. https://doi.org/10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X
  68. Thomas, J., Perron, H., and Feschotte, C. (2018). Variation in proviral content among human genomes mediated by LTR recombination. Mob. DNA 9, 36.
  69. Wahls, W.P., Wallace, L.J., and Moore, P.D. (1990). The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol. Cell. Biol. 10, 785-793.
  70. Wang, A.J., Quigley, G.J., Kolpak, F.J., van der Marel, G., van Boom, J.H., and Rich, A. (1981). Left-handed double helical DNA: variations in the backbone conformation. Science 211, 171-176. https://doi.org/10.1126/science.7444458
  71. Xiao, H. and Xu, Y. (2021). Overexpression of apolipoprotein C1 (APOC1) in clear cell renal cell carcinoma and its prognostic significance. Med. Sci. Monit. 27, e929347.
  72. Yi, J.M. and Kim, H.S. (2007a). Expression and phylogenetic analyses of human endogenous retrovirus HC2 belonging to the HERV-T family in human tissues and cancer cells. J. Hum. Genet. 52, 285-296. https://doi.org/10.1007/s10038-007-0115-8
  73. Yi, J.M. and Kim, H.S. (2007b). Molecular phylogenetic analysis of the human endogenous retrovirus E (HERV-E) family in human tissues and human cancers. Genes Genet. Syst. 82, 89-98. https://doi.org/10.1266/ggs.82.89
  74. Yi, J.M., Kim, T.H., Huh, J.W., Park, K.S., Jang, S.B., Kim, H.M., and Kim, H.S. (2004). Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342, 283-292. https://doi.org/10.1016/j.gene.2004.08.007
  75. Yi, J.M., Schuebel, K., and Kim, H.S. (2007c). Molecular genetic analyses of human endogenous retroviral elements belonging to the HERV-P family in primates, human tissues, and cancer cells. Genomics 89, 1-9. https://doi.org/10.1016/j.ygeno.2006.08.010
  76. Yu, H.L., Zhao, Z.K., and Zhu, F. (2013). The role of human endogenous retroviral long terminal repeat sequences in human cancer. Int. J. Mol. Med. 32, 755-762. https://doi.org/10.3892/ijmm.2013.1460
  77. Zimmer, C., Tymen, S., Marck, C., and Guschlbauer, W. (1982). Conformational transitions of poly(dA-dC) (poly(dG-dT) induced by high salt or in ethanolic solution. Nucleic Acids Res. 10, 1081-1091. https://doi.org/10.1093/nar/10.3.1081