• Title/Summary/Keyword: LTPS

Search Result 177, Processing Time 0.027 seconds

High-Resolution LTPS TFT-LCDs for mobile phone applications

  • Ha, Yong-Min;Hwang, Han-Wook;Kim, Sang-Ho;Park, Jae-Deok;Cha, Soo-youle
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.21-25
    • /
    • 2005
  • In order to implement high pixel density in AMLCDs, high aperture ratio is a very important design factor. We have implemented VGA panels with IPS and TN modes. IPS mode is a very attractive solution to meet the requirement for mobile phone displays. It provides much higher aperture ratio as well as wider viewing angle at extremely high pixel density over 400 ppi.

  • PDF

Effective Annealing and Crystallization of Si film for Advanced TFT System

  • Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.254-257
    • /
    • 2009
  • The crystallization and activated annealing effect of Si films using an excimer laser and a new CW blue laser are described comparing with furnace annealing (SPC) for the application of advanced TFTs and future applications. Currently, pulsed ELA is used extensively as a LTPS process on glass substrates as the efficiency is high in UV region for thin Si film of 40- 60 nm thickness. ELA enables extremely low resistivity for both n- and p-typed Si films. On the other hand, CW BLDA enables the smooth Si surface having arbitral grains from micro-grains to anisotropic huge grain structure only controlling its power density.

  • PDF

High Performance of Crystallization for LPTS TFTs Using Solid Green Laser

  • Nishida, K.;Kawakami, R.;Izawa, J.;Kawaguchi, N.;Matsuzaka, F.;Masaki, M.;Morita, M.;Yoshinouchi, A.;Kawasaki, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.911-914
    • /
    • 2007
  • We developed the laser annealing system using green laser of 261W(5kHz) and 75.5mJ/pulse(2kHz). We confirmed that this system makes it possible to form two kinds(large or uniformed grain) of poly-Si by changing its polarized directions. By using ${\mu}-crystal-Si$ as irradiated films, grain size uniformity is better than that using a-Si.

  • PDF

High Speed Parallel Fault Detection Design for SRAM on Display Panel

  • Jeong, Kyu-Ho;You, Jae-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.806-809
    • /
    • 2007
  • SRAM cell array and peripheral circuits on display panel are designed using LTPS process. To overcome low yield of SOP, high speed parallel fault detection circuitry for memory cells is designed at local I/O lines with minimal overhead for efficient memory cell redundancy replacement. Normal read/write and parallel test read/write are simulated and verified.

  • PDF

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

Study of Post Excimer Laser Annealing effect on Silicide Mediated Polycrystalline Silicon. (실리사이드 매개 결정화된 다결정 실리콘 박막의 후속 엑시머 레이저 어닐링 효과에 대한 연구)

  • Choo, Byoung-Kwon;Park, Seoung-Jin;Kim, Kyung-Ho;Son, Yong-Duck;Oh, Jae-Hwan;Choi, Jong-Hyun;Jang, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.173-176
    • /
    • 2004
  • In this study we investigated post ELA(Excimer Laser Annealing) effect on SMC (Silicide Mediated Crystalization) poly-Si (Polycrystalline Silicon) to improve the characteristics of poly-Si. Combining SMC and XeCl ELA were used to crystallize the a-Si (amorphous Silicon) at various ELA energy density for LTPS (Low Temperature Polycrystalline Silicon). We fabricated the conventional SMC poly-Si with no SPC (Solid Phase Crystallization) phase using UV heating method[1] and irradiated excimer laser on SMC poly-Si, so called SMC-ELA poly-Si. After using post ELA we can get better surface morphology than conventional ELA poly-Si and enhance characteristics of SMC poly-Si. We also observed the threshold energy density regime in SMC-ELA poly-Si like conventional ELA poly-Si.

  • PDF

Analysis of An Anomalous Hump Phenomenon in Low-temperature Poly-Si Thin Film Transistors (저온 다결정 실리콘 박막 트랜지스터의 비정상적인 Hump 현상 분석)

  • Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Lee, Sang-Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.900-904
    • /
    • 2011
  • In this paper, we investigated an anomalous hump phenomenon under the positive bias stress in p-type LTPS TFTs. The devices with inferior electrical performance also show larger hump phenomenon. which can be explained by the sub-channel induced from trapped electrons under thinner gate oxide region. We can confirm that the devices with larger hump have larger interface trap density ($D_{it}$) and grain boundary trap density ($N_{trap}$) extracted by low-high frequency capacitance method and Levinson-Proano method, respectively. From the C-V with I-V transfer characteristics, the trapped electrons causing hump seem to be generated particularly from the S/D and gate overlapped region. Based on these analysis, the major cause of an anomalous hump phenomenon under the positive bias stress in p-type poly-Si TFTs is explained by the GIDL occurring in the S/D and gate overlapped region and the traps existing in the channel edge region where the gate oxide becomes thinner, which can be inferred by the fact that the magnitude of the hump is dependent on the average trap densities.

Divergence of Genes Encoding Non-specific Lipid Transfer Proteins in the Poaceae Family

  • Jang, Cheol Seong;Jung, Jae Hyeong;Yim, Won Cheol;Lee, Byung-Moo;Seo, Yong Weon;Kim, Wook
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.215-223
    • /
    • 2007
  • The genes encoding non-specific lipid transfer proteins (nsLTPs), members of a small multigene family, show a complex pattern of expressional regulation, suggesting that some diversification may have resulted from changes in their expression after duplication. In this study, the evolution of nsLTP genes within the Poaceae family was characterized via a survey of the pseudogenes and unigenes encoding the nsLTP in rice pseudomolecules and the NCBI unigene database. nsLTP-rich regions were detected in the distal portions of rice chromosomes 11 and 12; these may have resulted from the most recent large segmental duplication in the rice genome. Two independent tandem duplications were shown to occur within the nsLTP-rich regions of rice. The genomic distribution of the nsLTP genes in the rice genome differs from that in wheat. This may be attributed to gene migration, chromosomal rearrangement, and/or differential gene loss. The genomic distribution pattern of nsLTP genes in the Poaceae family points to the existence of some differences among cereal nsLTP genes, all of which diverged from an ancient gene. The unigenes encoding nsLTPs in each cereal species are clustered into five groups. The somewhat different distribution of nsLTP-encoding EST clones between the groups across cereal species imply that independent duplication(s) followed by subfunctionalization (and/or neofunctionalization) of the nsLTP gene family in each species occurred during speciation.