• Title/Summary/Keyword: LSM coating

Search Result 20, Processing Time 0.025 seconds

Research on Performance of LSM Coating on Interconnect Materials for SOFCs

  • Zhai, Huijuan;Guan, Wanbing;Li, Zhi;Xu, Cheng;Wang, Wei Guo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.777-781
    • /
    • 2008
  • Experiments were conducted using SUS430 and Crofer 22 APU steels coated by LSM using plasma spray and slurry spray methods, respectively. High-temperature conductivity and oxidation resistance were investigated. For comparison, SUS430 and Crofer 22 APU without LSM coating were also investigated and coefficient of thermal expansion (CTE) was measured. The results show that the materials without LSM coating exhibit almost the same CTE as YSZ electrolyte in a range of temperatures of $550{\sim}850^{\circ}C$. When coated with LSM, the oxidation rate of the steels decreases by $30{\sim}40%$ using slurry spray and by $10{\sim}30%$ using plasma spray whereas the steels using plasma spray have a better high-temperature conductivity than the steels using slurry spray. It is thus concluded that the LSM coating has a limited effect on increasing high-temperature conductivity while it can effectively reduce the oxidation of the steels.

Coating of LSM Ink in the Layered Planar Type SOFC (적층 평판형 SOFC에서 LSM 전극 코팅)

  • Lee, Sung-Il;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.552-557
    • /
    • 2012
  • In this study, we have coated the inner surface of YSZ channel using LSM powder ink through depressurization process for making the cathode of a stacked planar-type SOFC module. To coat the surface of YSZ channel uniformly, we tried to find the optimum manufacturing condition for LSM ink. We used four different dispersants (BYK series) and two different solvents (ethanol and DMF) to make the LSM ink. It was revealed that the ink made with the ethanol solvent and the BYK-111 dispersant has the lowest viscosity, relatively low contact angle and most excellent dispersibility. After depressurizing a chamber filled with LSM ink and sintered YSZ channel, we have found that the YSZ channel was uniformly coated with LSM cathode. The LSM ink with 25 vol% BYK-111 showed the most uniform coating.

Anode-supported Solid Oxide Fuel Cells Prepared by Spin-coating (Spin-coating 공정에 의해 제조된 음극 지지형 고체산화물 연료전지)

  • Yu, Ji-Haeng;Lee, Hee-Lak;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.733-739
    • /
    • 2007
  • NiO-YSZ anode-supported single cell was prepared by spin-coating YSZ and LSM slurries as electrolyte and cathode, respectively. Dense YSZ electrolyte film was successfully prepared on the porous NiO-YSZ anode substrate by tuning pre-sintering temperature of NiO-YSZ and co-firing temperature. The thickness of YSZ film was controlled by the solid content of slurry and coating cycles. The experimental conditions affecting on the thickness of YSZ film was discussed. Single cells with the active electrode area ${\sim}0.8\;cm^2$ were prepared by spin-coating the cathode layers of LSM-YSZ mixture and LSM consequently as well. The effects of the pre-sintering temperature and thus the microstructure of NiO-YSZ substrate on the current-voltage characteristics of co-fired cell were investigated.

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

Fabrication and Electrochemical Characterization of LSM/GDC based Cathode Supported Direct Carbon Fuel Cells (직접탄소 연료전지용 LSM/GDC 공기극 지지체 제조 및 전기화학 특성 평가)

  • Ahmed, Bilal;Wahyudi, Wandi;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.230-236
    • /
    • 2013
  • In this study, successive coating and co-sintering techniques have been used to fabricate LSM/GDC based cathode supported direct carbon fuel cells. The porous LSM/GDC cathode substrate, dense, thin and crack free GDC and ScSZ layers as bi-layer electrolyte, and a porous Ni/ScSZ anode layer was obtained by co-firing at $1400^{\circ}C$. The porous structure of LSM/GDC cathode substrate, after sintering at $1400^{\circ}C$, was obtained due to the presence of GDC phase, which inhibits sintering of LSM because of its higher sintering temperature. The electrochemical characterization of assembled cell was carried out with air as an oxidant and carbon particles in molten carbonate as fuel. The measured open circuit voltages (OCVs) were obtained to be more than 0.99 V, independent of testing temperature. The peak power densities were 116, 195 and $225mWcm^{-2}$ at 750, 800 and $850^{\circ}C$, respectively.

Development of LSM-Coated Crofer Mesh for Current Collectors in Solid Oxide Fuel Cells (LSM이 코팅된 고체산화물 연료전지용 Crofer Mesh 집전체 개발)

  • Baek, Joo-Yul;Park, Seok-Joo;Lee, Seung-Bok;Lee, Jong-Won;Lim, Tak-Hyoung;Song, Rak-Hyun;Kim, Kwang-Bum;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.256-263
    • /
    • 2010
  • A Crofer 22 APU mesh coated with a conductive ceramic material was developed as an alternative cathode current collector to Ag-based materials for solid oxide fuel cells. $(La_{0.80}Sr_{0.20})_{0.98}MnO_3$ (LSM) layer was deposited onto the Crofer mesh using a spray-coating technique, in an attempt to mitigate the degradation of electrical properties due to surface oxidation at high temperatures. The oxidation experiments at $800^{\circ}C$ in air indicated that the areaspecific resistance (ASR) of the LSM-coated Crofer mesh was strongly dependent on the wire diameter and the contact morphology between mesh and cell. In addition, the post-heat-treatment in $H_2/N_2$ resulted in a reduced thickness of Cr-containing oxide scales at the interface between Crofer mesh and LSM layer, leading to a decreased ASR.

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.

Fabrication and Property Evaluation of Tubular Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 관형 SOFC의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.562-566
    • /
    • 2012
  • A novel design of tubular segmented-in-series(SIS) solid oxide fuel cell (SOFC) sub module was presented in this paper. The tubular ceramic support was fabricated by the extrusion technique. The NiO-YSZ anode and the yttria-stabilized zirconia (YSZ) electrolyte were deposited onto the ceramic support by dip coating method. After sintering at $1350^{\circ}C$ for 5 h, a dense and crack-free YSZ film was successfully fabricated. Also, the multi-layered cathode composed of LSM-YSZ composite, LSM and LSCF were coated onto the sintered ceramic support by dip coating method and sintered at $1150^{\circ}C$. The performance of the tubular SIS SOFC cell and sub module electrically connected by the Ag-glass interconnect was measured and analysed with different fuel flow and operating temperature.

The Effect of Cr from STS Interconnect on the Polarization Resistance of LSCF Cathode (스테인리스 스틸 연결재의 Cr이 LSCF 양극의 분극저항에 미치는 영향)

  • Hwang, Ho-June;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.715-719
    • /
    • 2007
  • STS444 with or without $La_{0.9}Sr_{0.1}MnO_3$ (LSM)-coating was contacted to $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) cathode on various electrolyte materials and the polarization resistance $(R_p)$ was measured by impedance spectroscopy. By making a symmetric half-cell and contacting only one side of the cathode with the interconnect, the effect of chromium (Cr) poisoning was separated from the aging effects. When the LSCF cathode was contacted with LSM-coated STS (stainless steel), $R_p$ of LSCF was lower than that contacted with the uncoated STS. Impedance patterns measured for the working electrode (W.E.), the counter electrode (C.E.) at $600^{\circ}C$ in air were analyzed. Normalized data of net Cr effect showed that $Ce_{0.9}Gd_{0.1}O_2$ (GDC) electrolyte is more tolerant to the chromium poisoning than $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}$ (LSGM) or 8 mol% $Y_2O_3-doped$ $ZrO_2$ (YSZ) electrolytes.

Characterization of (La,Sr))$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ Interface with Citric Acid Contents and Sintering Temperature (시트르산의 양과 소결온도에 따른 (La,Sr)$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ 계면특성)

  • 윤일영;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 1998
  • G $d_{0.2}$C $e_{0.8}$ $O_{1.9}$(CGO) for electrolyte and L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM50) for cathode in Solid Oxide Fuel Cells(SOFC) were synthesized by citrate process. Specimens were prepared with sintering temperatures at 110$0^{\circ}C$, 120$0^{\circ}C$ and 130$0^{\circ}C$, which were fabricated by slurry coating with citric acid contents. Interfacial resistance was measured between cathode and electrolyte using AC-impedance analyzer. With various citric acid content, the degree of agglomeration for the initial particles changed. Also sintering temperature changed the particle size and the degree of densification of cathode. Factors affecting the interfacial resistance were adherent degree of the electrolyte and cathode, distribution of TPB(three phase boundaries, TPB i.e., electrolyte/electrode/gas phase area) and porosity of cathode. By increasing the sintering temperature, particle size and densification of the cathode were increased. And then, TPB area which occurs catalytic reaction was reduced and so interfacial resistance was increased.sed.sed.d.

  • PDF