DOI QR코드

DOI QR Code

Fabrication and Electrochemical Characterization of LSM/GDC based Cathode Supported Direct Carbon Fuel Cells

직접탄소 연료전지용 LSM/GDC 공기극 지지체 제조 및 전기화학 특성 평가

  • Ahmed, Bilal (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Wahyudi, Wandi (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Lee, Seung-Bok (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Song, Rak-Hyun (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Lee, Jong-Won (Department of Advanced Energy Technology, University of Science and Technology) ;
  • Lim, Tak-Hyoung (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Park, Seok-Joo (Fuel Cell Research Center, Korea Institute of Energy Research)
  • 빌랄 아메드 (과학기술연합대학원 신에너지학과) ;
  • 완디 와휴디 (과학기술연합대학원 신에너지학과) ;
  • 이승복 (과학기술연합대학원 신에너지학과) ;
  • 송락현 (과학기술연합대학원 신에너지학과) ;
  • 이종원 (과학기술연합대학원 신에너지학과) ;
  • 임탁형 (한국에너지기술연구원 수소연료전지연구단) ;
  • 박석주 (한국에너지기술연구원 수소연료전지연구단)
  • Received : 2013.06.13
  • Accepted : 2013.06.30
  • Published : 2013.06.30

Abstract

In this study, successive coating and co-sintering techniques have been used to fabricate LSM/GDC based cathode supported direct carbon fuel cells. The porous LSM/GDC cathode substrate, dense, thin and crack free GDC and ScSZ layers as bi-layer electrolyte, and a porous Ni/ScSZ anode layer was obtained by co-firing at $1400^{\circ}C$. The porous structure of LSM/GDC cathode substrate, after sintering at $1400^{\circ}C$, was obtained due to the presence of GDC phase, which inhibits sintering of LSM because of its higher sintering temperature. The electrochemical characterization of assembled cell was carried out with air as an oxidant and carbon particles in molten carbonate as fuel. The measured open circuit voltages (OCVs) were obtained to be more than 0.99 V, independent of testing temperature. The peak power densities were 116, 195 and $225mWcm^{-2}$ at 750, 800 and $850^{\circ}C$, respectively.

Keywords

References

  1. L. Schipper, Automobile use, fuel economy and $CO_2$ emissions in industrialized countries: Encouraging trends through 2008, Tranport Policy, Vol. 18, No. 2, 2011, pp. 358-372. https://doi.org/10.1016/j.tranpol.2010.10.011
  2. J. E. Sinton, D. G. Fridley, What goes up: recent trends in China's energy consumption, Energy Policy, Vol. 28, No. 10, 2000, pp. 671-687. https://doi.org/10.1016/S0301-4215(00)00053-7
  3. K. Pointon, B. Lakeman, J. Irvine, J. Bradley, S. Jain, The development of a carbon-air semi fuel cell, J. Power Sources, Vol. 162, No. 2, 2006, pp. 750-756. https://doi.org/10.1016/j.jpowsour.2005.07.023
  4. N. J. Cherepy, R. Krueger, K. J. Fiet, A. F. Jankowski, J. F. Cooper, Direct conversion of carbon fuels in a molten carbonate fuel cell, J. Electrochem. Soc., Vol. 152, No. 1, 2005, pp. A80-A87. https://doi.org/10.1149/1.1836129
  5. M. Steingberg, Conversion of fossil and biomass fuels to electric power and transportation fuels by high efficiency integrated plasma fuel cell (IPFC) energy cycle, Int. J. Hydrogen Energy, Vol. 31, No. 3, 2006, pp. 405-411. https://doi.org/10.1016/j.ijhydene.2005.08.007
  6. W. H. A. Peelen, K. Hemmes, J. H. W. de Wit, Carbon a major energy carrier for the future Direct carbon fuel cells and molten salt coal/ biomass gasification, High Temperature Material Processes, Vol. 2, No. 4, 1998, pp. 471-482. https://doi.org/10.1615/HighTempMatProc.v2.i4.30
  7. G. A. Hackett, J.W. Zondlo, R. Svensson, Evaluation of carbon materials for use in a direct carbon fuel cell, J. Power Sources, Vol. 168, No. 1, 2007, pp. 111-118. https://doi.org/10.1016/j.jpowsour.2007.02.021
  8. S. L. Jain, Y. Nabae, B. J. Lakeman, K. D. Pointon, J. T. S. Irvine, Solid state electrochemistry of direct carbon/air fuel cells, Solid State Ionics, Vol. 179, No. 27-32, 2008, pp. 1417-1421 https://doi.org/10.1016/j.ssi.2008.01.078
  9. S. Zecevic, E. M. Patton, P. Parharni, Carbon-air fuel cell without a reforming process, Carbon, Vol. 42, No. 10, 2004, pp. 1983-1993. https://doi.org/10.1016/j.carbon.2004.03.036
  10. J. R. Selman, Molten-salt fuel cells—Technical and economic challenges, J. Power Sources, Vol. 160, No. 2, 2006, pp. 852-857. https://doi.org/10.1016/j.jpowsour.2006.04.126
  11. T. Nunoura, K. Dowaki, C. Fushimi, S. Allen, E. Meszaros, M. J. Antal, Performance of a firstgeneration, aqueous-alkaline biocarbon fuel cell, Industrial and Engineering Chemistry Research, Vol. 46, No. 3, 2007, pp. 734-744. https://doi.org/10.1021/ie061202s
  12. X. Li, Z. H. Zhu, J. L. Chen, R. De Marco, A. Dicks, J. Bradley, G. Q. Lu, Characterization and biodegradation of chitosan-alginate polyelectrolyte complexes, Polymer Degradation and Statbility, Vol. 94, No. 1, 2009, pp. 1-6. https://doi.org/10.1016/j.polymdegradstab.2008.10.017
  13. R. Z. Liu, C. H. Zhao, J. L. Li, F. R. Zeng, S. R. Wang, T. L. Wen, Z. Y. Wen, A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells, J. Power Sources, Vol. 195, No. 2, 2010, pp. 480-482. https://doi.org/10.1016/j.jpowsour.2009.07.032
  14. J. Zhou, X. F. Ye, L. Shao, X. P. Zhang, J.Q. Qian, S.R. Wang, A promising direct carbon fuel cell based on the cathode-supported tubular solid oxide fuel cell technology, Electrochimica Acta, Vol. 74, 2012, pp. 267-270. https://doi.org/10.1016/j.electacta.2012.04.080
  15. S.C. Singhal, K. Kindall, High temperature solid oxide fuel cells fundamentals. Design and application. Elsevier, Amstermdam (2003).
  16. K. J. Yoon, W.H. Huang, G. S. Ye, S. Gopalan, U. B. Pal, D. A. Seccombe, Electrochemical performance of solid oxide fuel cells manufactured by single step co-firing process, Vol. 154 No. 4, 2007, pp. B389-B395. https://doi.org/10.1149/1.2436610
  17. L. Zhang, S. P. Jiang, W. Wang, Y. J. Zhang, NiO/YSZ anode-supported thin-electrolyte solid oxide fuel cells fabricated by gel casting, Vol. 170, No. 1, 2007, pp. 55-60. https://doi.org/10.1016/j.jpowsour.2007.03.080