Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.4.256

Development of LSM-Coated Crofer Mesh for Current Collectors in Solid Oxide Fuel Cells  

Baek, Joo-Yul (School of Advanced Material Engineering, Yonsei University)
Park, Seok-Joo (Fuel Cell Research Center, Korea Institute of Energy Research)
Lee, Seung-Bok (Fuel Cell Research Center, Korea Institute of Energy Research)
Lee, Jong-Won (Fuel Cell Research Center, Korea Institute of Energy Research)
Lim, Tak-Hyoung (Fuel Cell Research Center, Korea Institute of Energy Research)
Song, Rak-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research)
Kim, Kwang-Bum (School of Advanced Material Engineering, Yonsei University)
Shin, Dong-Ryul (Fuel Cell Research Center, Korea Institute of Energy Research)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.4, 2010 , pp. 256-263 More about this Journal
Abstract
A Crofer 22 APU mesh coated with a conductive ceramic material was developed as an alternative cathode current collector to Ag-based materials for solid oxide fuel cells. $(La_{0.80}Sr_{0.20})_{0.98}MnO_3$ (LSM) layer was deposited onto the Crofer mesh using a spray-coating technique, in an attempt to mitigate the degradation of electrical properties due to surface oxidation at high temperatures. The oxidation experiments at $800^{\circ}C$ in air indicated that the areaspecific resistance (ASR) of the LSM-coated Crofer mesh was strongly dependent on the wire diameter and the contact morphology between mesh and cell. In addition, the post-heat-treatment in $H_2/N_2$ resulted in a reduced thickness of Cr-containing oxide scales at the interface between Crofer mesh and LSM layer, leading to a decreased ASR.
Keywords
Solid oxide fuel cell; Current collector; Crofer 22 APU mesh; LSM; Area-specific resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Yang, G. Xia, and J. W. Stevenson, '$Mn_{1.5}Co_{1.5}O_4 $ spinel protection layers on ferritic stainless steels for SOFC interconnect applications' Electrochem. Solid-State Lett., 8, 168 (2005).   DOI
2 Z. Yang, G. Xia, G. D. Maupin, and J. W. Stevenson, 'Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications' Surf. Coat. Tech., 201, 4476 (2006).   DOI
3 S. S. Pyo, S. B. Lee, T. H. Lim, R. H. Song, D. R. Shin, S. H. Hyun, and Y. S. Yoo, 'Characteristic of $(La_{0.8}Sr_{0.2})_{0.98}MnO_3$ coating on Crofer22APU used as metallic interconnects for solid oxide fuel cell' Int. J. Hydrogen Energy, in press.
4 S. P. Jiang, J. G. Love, and L. Apateanu, 'Effect of contact between electrode and current collector on the performance of solid oxide fuel cells' Solid State Ionics, 160, 15 (2003).   DOI
5 B. P. McCarthy, L. R. Pederson, ,Y. S. Chou, X. D. Zhou, W. A. Surdoval, and L. C. Wilson, 'Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs' J. Power Sources, 180, 294 (2008).   DOI
6 J. H. Kim, R. H. Song, and S. H. Hyun, 'Effect of slurrycoated $LaSrMnO_3$ on the electrical property of Fe-Cr alloy for metallic interconnect of SOFC' Solid State Ionics, 174, 185 (2004).   DOI
7 M. G. Fontana, and N. D. Greene, 'Corrosion Engineering' McGraw-Hill (1986).
8 W. F. Smith, 'Structure and properties of engineering alloys' McGraw-Hill (1993).
9 J. H. Kuo, H. U. Anderson, and D. M. Sparlin, 'Oxidationreduction behavior of undoped and Sr-doped $LaMnO_3$ nonstoichiometry and defect structure' J. Solid State Chem., 83, 52 (1989).   DOI
10 J. Mizusaki and H. Tagawa, 'Nonstoichiometry and thermochemical stability of the perovskite-type $La_{1-x}Sr_xMnO_{3-{\delta}}$' Solid State Ionics, 49, 111 (1991).   DOI
11 H. Tu and U. Stimming, 'Advances, aging mechanisms and lifetime in solid-oxide fuel cells' J. Power Sources, 127, 284 (2004).   DOI
12 A. Webber and E. I. Tiffee, 'Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications' J. Power Sources, 127, 273 (2004).   DOI
13 Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, and J. W. Stevenson, 'Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications' J. Electrochem. Soc., 151, A1825 (2004).   DOI
14 N. Sakai, T. Horita, Y. P. Xiong, K. Yamaji, H. Kishimoto, M. E. Brito, H. Yokokawa, and T. Maruyama, 'Structure and transport property of manganese-chromium-iron oxide as a main compound in oxide scales of alloy interconnects for SOFCs' Solid State Ionics, 176, 681 (2005).   DOI
15 M. G. E. Cox, B. McEnaney, and V. D. Scott, 'A chemical diffusion model for partitioning of transition elements in oxide scales on alloys' Philosophical Magazine, 26, 839 (1972).   DOI
16 R. K. Wild, 'High temperature oxidation of austenitic stainless steel in low oxygen pressure' Corrosion Sci., 17, 87 (1977).   DOI
17 X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco, and L. C. D. Jonghe, 'Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties' Solid State Ionics, 176, 425 (2005).   DOI
18 H. Jurokawa, K. Kawamura, and T. Maruyama, 'Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient' Solid State Ionics, 168, 13 (2004).   DOI
19 K. Fujita, T. Hashimoto, K. Ogasawara, H. Kameda, Y. Matsuzaki, and T. Sakurai, 'Relationship between electrochemical properties of SOFC cathode and composition of oxide layer formed on metallic interconnects' J. Power Sources, 131, 270 (2004).   DOI
20 S. C. Singhal and K. Kendall, 'High temperature solid oxide fuel cell: fundamentals, design and applications' Elsevier Science (2003).