• Title/Summary/Keyword: LRT(Light Railway Train)

Search Result 33, Processing Time 0.024 seconds

A Study on the Quantitative Quality of Service(QoS) of the Light Railway Transit System (경전철시스템의 정량적 서비스 품질에 관한 연구)

  • Ha, Chen-Soo;Ahn, Seok-Hwan;Lee, Chang-Huyng
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.2058-2064
    • /
    • 2008
  • This study is concerned with the quantitative Quality of Service(QoS) of the Light Railway Transit(LRT) System. Generally, the QoS offered to passengers by the Operator of LRT system can be quantified in various ways. In this paper, we assumed that the QoS is a combination of both Train Delivery and Train Punctuality under considering LRT characteristics including core sub-systems such as, rolling stock, signalling, power-supply and PSD(platform screen door), etc. We also, provide a quantitative analysis method to evaluate the QoS related the reliability of LRT system.

  • PDF

The Simulation and Experimental Study on the Bridge Response of AGT Bridge - Vehicle interaction System (AGT 시스템 교량-차량 상호작용에 의한 교량응답 시뮬레이션 및 실험)

  • Na, Sang-Ju;Kim, Ki-Bong;Song, Jae-Pil;Kim, Hyun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.395-400
    • /
    • 2007
  • LRT(Light Railway Train), which is a intermediate system of train and bus, is arose for the solution of subway construction cost and the transportation capacity of bus. LRT was introduced in 1980's. About 30 local governments are plan to introduce LRT or constructing LRT, at present. AGT(Automated Guide-way Transit) system, which is a kind of LRT, is operated without driver. Rubber wheeled AGT system can reduce the noise and vibration compare to steel wheeled AGT, so it is estimated as ideal transportation system for urban area. And live loads at bridge are classified as the static load of vehicle and the dynamic wheel contact load which is occurred from the interaction of bridge and vehicle vibration, and the surface roughness. In the case of AGT system, the dynamic increment factor of bridge is greater than the normal train bridge and roadway bridge, because, the weight of AGT vehicle is more light that the train of truck. The exact method for dynamic increment factor is experiment. But this method is needed much money and time, moreover, this method cannot be adopted in design. Therefore, a simulation program for the interaction of AGT bridge, vehicle and surface roughness was developed, in this study. And the program was verified by experiment. As a result, the accuracy of the simulation program can be verified.

  • PDF

Automatic train control system of Light rail transit for Rubber Tire (고무차륜 경량전철용 자동운전 시스템의 제어방법)

  • 이은규;최재호
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • This paper proposes the Train Control System for the LRT(light rail transit). With regard to information processing in car, we build a computer network in the car, turned the hardware required for train control into software, and developed the Train Control Monitoring System(TCMS) and ATC. Drive Type of Train control system car can drive with Driverless mode basically, and this paper applied 10Mbps special communication type for car control, data analysis, The propulsion efforts and breaking effort can control the cars. It is used Vector Control in Propulsion control and proposed Operating pattern for Propulsion control thinking Operating data of Rubber Tire LRT.

A Study on TPS based on ATO for Driverless LRT (ATO 자동운전 기반의 무인운전 경전철 TPS에 관한 연구)

  • Lee, Chang Hyung;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.609-615
    • /
    • 2012
  • TPS (Train Performance Simulation) based on ATO (Automatic Train Operation) is required for driverless LRT (Light Rail Transit) operation plan instead of typical TPS based on driver operation. In this paper, new TPS model using ATO pattern is proposed and compared with the automatic train operation result in a test line of Seoul Metro Line 6 and in a whole line of Busan-Gimhae LRT. The actual ATO pattern can be very accurately simulated by new TPS model with the introduction of 4 parameters such as commercial braking rate, jerk, station stop profile and grade converted distance. The commercial scheduled time for driverless automatic train operation can be proposed to have "Fast" mode TPS trip time plus 3 seconds/km margin recommended by Korean standard LRT specification in this paper.

Proposal of the Track Layout Criterion for the Light Rail Transit (경량전철 선로선형기준에 대한 제안)

  • 오지택;한승용;윤태양;성택룡
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.111-118
    • /
    • 2000
  • This paper proposes the track layout criterion for the LRT(light rail transit). All criterions established concerning dimension and performance of LRT vehicles that are three types. Types of vehices are AGT(automated guided train) steel wheel. AGT rubber tire and LIM(linear induction motor). Using theoritical approach, adaptation and validity of criterions are verified. Proposed criterions may provide a standard scheme for design and construction of the infrastructure on LRT.

  • PDF

The Organization of Interface Items for Rubber Tired AGT System of Light Rail Transit (경량전철 고무차륜 AGT 시스템의 인터페이스 체계 정립)

  • Lee, An-Ho;Kim, Jae-Min
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.98-103
    • /
    • 2003
  • Recently, to solve the urban transportation problem, the introduction of Light Rail Transit system has been proceeded positively. therefore, development of the Korean standard LRT system in which safety, efficiency and cost effectiveness are emphasized. The Korea Railroad Research institute study on Rubber Tired AGT system of Light Rail Transit to obtain the essential technology and engineering know-how, which leads lower LRT construction cost. In the development procedure, SE(system Engineering) is needed for combination of subsystem and optimum operation effect. This study is focused on the interface of LRT subsystem(Development of the rubber tired LRT, Power supply system, signalling and train control system, Elevated track structure for the rubber tired LRT), a important part of SE, to develop of the driverless LRT system and establish the test and evaluation.

  • PDF

The Estimation of Structural-Borne Noise and Vibration of the Bridge under the Passage of the Light Rail Transit (경량전철 교량 상부구조의 열차주행에 대한 진동 및 소음 분석)

  • Yeo, In-Ho;Chung, Won-Seok;Kim, Sung-Choon;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.22-28
    • /
    • 2007
  • During the passage of the train, the railway bridge undergoes vibration and noise. The noise of railway bridge can be occurred from various sources. The wheel-rail contact, noise from machinery parts, structural-borne noise, pantagraph noise and aerodynamic noise of the train work in combination. Running train is one of the most important factors for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

Development of Dynamic Simulator for Light Rail Transit Depot (경량전철 차량기지 동적 시뮬레이터 개발)

  • Yang, Won-Mo
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • Recently, in the era of low carbon and green growth, the importance of railway transportation is being emphasized However, there is a lack of research on simulation for railway depot. This paper presents the development of the dynamic simulator for LRT(Light Rail Transit) depot. This study presents explanations of requirement analysis, architecture, database design, simulation algorithm, and design and development of the simulation tool. The dynamic LRT depot simulation tool consists of four modules; a Network Editor to create and modify information regarding railroad, train, signal, turnout, job and station, a Simulator to calculate train movement algorithm, a Reporter to show simulation results in table and graphs, and an Animator to animate simulation results dynamically. It is hoped that this study on general details of structure, design and development of LRT depot dynamic simulator will perform as a good reference to future development of new simulation tools.

The train tracking of Rubber Tired AGT System using CBTC (고무차륜 AGT의 CBTC에 의한 위치검지시험)

  • Jeong Rak-Gyo;Jeong Sang-Gi;Kim Yeon-Soo;Lee Jeong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.953-957
    • /
    • 2005
  • Light Rail Transit(LRT) Systems with transport capacity between subway and bus(5,000-25,000 persons per hour) are being carried on over 100 lines around the world. In Korea, to solve the urban transportation problem, the introduction of LRT system has been proceeded positively. It is planned to develop the Korean standard LRT system in which safety, efficiency and cost effectiveness are emphasized. So we were able to make proto type of Rubber tired AGT system for LRT. This is capable of driverless operation using CBTC(Communication Based Train Control) of Moving Block System and is currently making an experiment for reliability in test-line. This study is focused on verifving the train tracking with CBTC in driverless and ATO mode through implementing the examination.

  • PDF