• 제목/요약/키워드: LQG design

검색결과 143건 처리시간 0.027초

Roll-to-roll 시스템에서 인쇄전자 생산을 위한 댄서 시스템의 LQG 정밀 장력 제어에 대한 연구 (A Study on the LQG Precision Tension Control of a Dancer System for a Production of Printed Electronics in Roll-to-roll Systems)

  • 성진우;강현규;신기현
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.65-73
    • /
    • 2009
  • For mass production of printed electronics in roll-to-roll fashion, precision tension control is important to reduce register errors. Register error should be minimized within several to tens of microns for many electronic devices to be manufactured through printing technology. In order to achieve this goal, tension disturbance must be attenuated before printing process within a certain range. In this paper, a certain tension range which allows maintaining register error within 10 micron was defined with specific operating conditions. A LQG controller was proposed instead of the conventional PI controller for precision tension control using a multivariable feedback. A guideline to determine design parameters for calculating LQ gain was proposed. The proposed LQG controller was compared to both PI controller and LQ regulator with white noise by numerical simulations. Results showed that the proposed LQG controller was effective for attenuating tension disturbance with white noise.

LQG 설계에 의한 RTP 온도제어 시스템 (An RTP Temperature Control System Based on LQG Design)

  • 송태승;유준
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.500-505
    • /
    • 2000
  • This paper deals with wafer temperature uniformity control essential in rapid thermal processing (RTP). One of the important control objectives of RTP is to keep the temperature over the wafer surface as uniformly as possible. For this, a discrete time state equation around the operating point is first identified by using the subspace fitting method, and a multivariable LQG(Linear Quadratic Gaussian) controller is designed based on the identified model. Simulation and experimental results show improvement in temperature uniformity over the conventional PID method.

  • PDF

LQG/LTR controller design for ground alignment of intertial platform

  • Kim, Jong-Kwon;Shin, Yong-Jin;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.372-375
    • /
    • 1995
  • The LQG/LTR controller design procedure for ground alignment of inertial platform is accomplished. Due to the alignment system dynamics, LQG/LTR controller is proposed to overcome both singular problem and nonsquare problem. To show the effectiveness of this control system, computer simulation was performed under the assumption of random sway motion.

  • PDF

LQG/LTR 방법을 이용한 강인한 서어보메커니즘의 제어기 설계 (A design of controller for robust servomechanism using LQG/LTR method)

  • 최중락;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.483-487
    • /
    • 1986
  • The LQG/LTR method is applied to the real servomechanism with the unknown modeling error and system noise variance Q$_{2}$. The equivalent discretized LQG controller is implemented on the 16-bit microcomputer and the experimental results show the improved stability and the satisfactory performance when the noise variance Q$_{2}$ is increased infinitly.

  • PDF

지능구조물의 능동진동제어를 위한 다중 PPF 제어기와 수정 LQG 제어기의 비교 연구 (Comparison of the Multiple PPF Control and the Modified LQG Control for the Active Vibration Suppression of Intelligent Structures)

  • 곽문규
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1121-1129
    • /
    • 1998
  • This research is concerned with the multiple PPF and the modified LQG controller design for active vibration control of intelligent structures. The intelligent structure is defined as the structure equipped with smart actuators and sensors. Various control techniques aimed for the piezoceramic sensors and actuators have been proposed for the active vibration control of smart structures and some of them prove their effectiveness experimentally. In this paper, the multiple PPF controller and the modified LQG controller are developed and applied to the smart grid structure. The multiple PPF control and the modified LQG control can be classified as the classical and the modern control techniques. respectively. The experimental results show that both control techniques are effective in suppressing vibrations. Two control techniques are compared with respect to the design process. the ease of implementation and the effectiveness

  • PDF

수정 LQG 제어기를 이용한 지능 구조물의 능동진동제어 (Active Vibration Suppression of Smart Structures using a Modified LQG Controller)

  • 신태식;곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.664-669
    • /
    • 1998
  • This research is concerned with the active vibration controller design for smart structures by a modified LQG controller. The smart structure is defined as the structure equipped with smart actuators and sensors. Various analog and digital control, techniques aimed for the piezoceramic sensors and actuators have been proposed for the active vibration control of smart structures. In this paper, the modified LQG controller is developed for the active vibration suppression of smart structures to implement the predefined decay rate on modal displacements. The proposed modified LQG controller proved its effectiveness by experiments.

  • PDF

다변수 LQG/LTR 설계에서 스케일링 행렬에 의한 강인성 여유 계산 (Computation of robustness margins in multivariable LQG/LTR design when the plant is scalled)

  • 강진식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.491-497
    • /
    • 1993
  • In MIMO design, input and output units are different from each other. By this reason, the effect of larger units to smaller one is not trivial and there is no method of proper scaling, optimal scaling. In this paper, robust stability of MIMO LQG/LTR design are analised when the plnat inputs and outputs are scalled. The upper bound of model error to guarantee the robust stability is obtained, and gain margin and phase margins are computed with respect to scalling matrices.

  • PDF

LQG/LTR 기법을 이용한 불확실한 선형 시스템의 견실한 출력 되먹임 제어기의 설계 (A Robust Output Feedback Controller Design for Uncertain Linear Systems Using LQG/LTR)

  • 장태정
    • 산업기술연구
    • /
    • 제15권
    • /
    • pp.209-215
    • /
    • 1995
  • In this paper, a controller design method for uncertain linear systems by output feedback is proposed. This method utilizes the LQG/LTR procedure for systems with uncertainties described in the time domain. It is assumed that the uncertainties satisfy the matching conditions and their bounds are known. First, a robust state feedback controller design method is introduced. Then, it is asymtotically recovered for the output feedback system by the loop transfer recovery(LTR) method under a certain condition.

  • PDF

유연 구조물에 대한 동역학 모델링 및 LQG/LTR 제어기 설계 (Dynamic Modeling and LQG/LTR Controller Design for the Flexible Structures)

  • 채장수;박태원
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.67-73
    • /
    • 2004
  • Some of Spacecraft's structures are flexible so that a certain expected disturbance can easily excite a low frequency vibration on these structures, having very low natural damping. Such vibration will degrade the performance of the system, which should to be kept in a specific shape or attitude against the undesired vibration. In this paper, LQG/LTR controller is developed using an additional dynamic model to increase the performance of the frequency responses at low frequency area. This study presents that the LQG/LTR design was an effective controller for the flexible structure.

Linear Matrix Inequalities(LMIs)를 이용한 강인한 LQR/LQG 제어기의 설계 (Design of robust LQR/LQG controllers by LMIs)

  • 유지환;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.988-991
    • /
    • 1996
  • The purpose of this thesis is to develop methods of designing robust LQR/LQG controllers for time-varying systems with real parametric uncertainties. Controller design that meet desired performance and robust specifications is one of the most important unsolved problems in control engineering. We propose a new framework to solve these problems using Linear Matrix Inequalities (LMls) which have gained much attention in recent years, for their computational tractability and usefulness in control engineering. In Robust LQR case, the formulation of LMI based problem is straightforward and we can say that the obtained solution is the global optimum because the transformed problem is convex. In Robust LQG case, the formulation is difficult because the objective function and constraint are all nonlinear, therefore these are not treatable directly by LMI. We propose a sequential solving method which consist of a block-diagonal approach and a full-block approach. Block-diagonal approach gives a conservative solution and it is used as a initial guess for a full-block approach. In full-block approach two LMIs are solved sequentially in iterative manner. Because this algorithm must be solved iteratively, the obtained solution may not be globally optimal.

  • PDF