• Title/Summary/Keyword: LPS challenge

Search Result 58, Processing Time 0.027 seconds

Dietary L-arginine Supplementation Improves Intestinal Function in Weaned Pigs after an Escherichia coli Lipopolysaccharide Challenge

  • Liu, Yulan;Han, Jie;Huang, Jingjing;Wang, Xiaoqiu;Wang, Fenglai;Wang, Junjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1667-1675
    • /
    • 2009
  • This study was conducted to determine whether L-arginine (Arg) supplementation could improve intestinal function in weaned pigs after an Escherichia coli lipopolysaccharide (LPS) challenge. Treatments included: i) non-challenged control (CONTR, pigs fed a control diet and injected with sterile saline); ii) LPS-challenged control (LPS, pigs fed the same control diet and challenged by injection with Escherichia coli LPS); iii) LPS+0.5% Arg (pigs fed a 0.5% Arg diet and challenged with LPS); and iv) LPS+1.0% Arg (pigs fed a 1.0% Arg diet and challenged with LPS). On d 16, pigs were administrated with LPS or sterile saline. D-xylose was orally administrated at 2 h following LPS challenge, and blood samples were collected at 3 h following LPS challenge. At 6 h post-challenge, pigs were sacrificed and intestinal mucosa samples were collected. Supplementation of Arg attenuated LPS-induced damage in gut digestive and barrier functions, as indicated by an increase in ileal lactase activity, and duodenal and ileal diamine oxidase activities (p<0.05). Arg administration also prevented the increase of jejunal malondialdehyde content and the decrease of ileal superoxide dismutase activity by LPS challenge (p<0.05). Furthermore, the jejunal nitric oxide level and inducible nitric oxide synthase activity were also improved after Arg supplementation (p<0.05). These results indicate that Arg supplementation has beneficial effects in alleviating the impairment of gut function induced by LPS challenge.

Biological effects of dietary probiotics on blood characteristics in Hanwoo heifers subjected to lipopolysaccharide (LPS) challenge

  • Park, Bo Hye;Kim, Ui Hyung;Jang, Sun Sik;Yang, Seung Hak;Lee, Eun Mi;Kang, Dong Hun;Kwon, Eung Gi;Chung, Ki Yong
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.818-827
    • /
    • 2016
  • This study hypothesized that dietary feed additive containing probiotics alter either immune-related serum substances or serum metabolites in Hanwoo heifers. A probiotic treatment was given at 0.5% top-dressing of concentrate diet for 6 months. The change of immunological indicators in the blood was analyzed under LPS (Lipopolysaccharide) challenge. One day before administration of LPS, all heifers were fitted with an indwelling jugular vein catheter for serial blood collections. Both a serum tube and an EDTA-coated tube were collected at 30-min intervals from - 2 to 8 hours relative to the LPS challenge at time 0 ($1{\mu}g/kg$ of BW). Serum was used for analyzing albumin (ALB), glucose (GLU), total protein (TP), triglycerides (TG), phosphorus (IP), and non-esterified fatty acids (NEFA). Plasma was used for analyzing white blood cell (WBC), red blood cell (RBC), platelet (PLT) and inflammation-related factors (NE, LY, MO, EO, BA, Hb, HCT, MCV, MCH, MCHC, RDW, MPV). There were significant differences in ALB, GLU, TG, IP, and NEFA concentration with the passage of hours post challenge (p < 0.05). The level of ALB, GLU, TG, and IP showed significant difference (p < 0.05) between treatments. However, none of the data showed interaction between time and treatments (p > 0.05). The level of WBC, EO, LY, and MO were reduced after LPS challenge (p > 0.05). In conclusion, LPS challenge after dietary supplementation of probiotics changed the levels of both serum metabolites and inflammation-related factors. The increase of GLU and TG indicated a probiotics-positive response under LPS challenge (p < 0.05).

Changes of Immunoglobulins and Lymphocyte Subpopulations in Peripheral Blood from Holstein Calves Challenged with Escherichia coli Lipopolysaccharide

  • Kim, M.H.;Yun, C.H.;Kim, G.R.;Ko, J.Y.;Lee, Jung-Joo;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.696-706
    • /
    • 2011
  • The objective of this study was to characterize serum immunoglobulins and lymphocytes subpopulations in the peripheral blood mononuclear cells (PBMCs) of Holstein calves in response to lipopolysaccharide (LPS) challenge from Escherichia coli. Fourteen calves received subcutaneous injections of E. coli LPS at 10 weeks of age, and six calves were injected with saline as a control. The concentrations of total serum IgG and the relative amount of LPS-specific IgG in calves challenged with LPS were significantly higher (p<0.05) compared to control animals and LPS challenge significantly increased (p<0.05) the percentage of $CD5^+$ and $CD21^+$ T cells in PBMCs. Meanwhile, LPS challenge significantly increased (p<0.05, p<0.01) the percentage of $CD8^+$ and $CD25^+$ T cells in peripheral blood mononuclear cells (PBMC) at 7 and 14 Day-post LPS challenge (DPLC), respectively. The composition of $CD4^+CD25^+$ T cells and $CD8^+CD25^+$ T cells from calves challenged with LPS was also higher (p<0.05 and p = 0.562, respectively) than those of control calves at 14 DPLC. In conclusion, LPS challenge not only induces production of IgG with expression of B-cell immune response related cell surface molecules, but also stimulates activation of T-lymphocytes in PBMC. Our results suggest that LPS challenge in calves is a good model to elucidate cellular immune response against Gram-negative bacterial infections.

Effect of Lipopolysaccharide (LPS) Exposure on the Reproductive Organs of Immature Female Rats

  • Yoo, Da Kyung;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • Lipopolysaccharide (LPS), an endotoxin, elicits strong immune responses in mammals. Several lines of evidence demonstrate that LPS challenge profoundly affects female reproductive function. For example, LPS exposure affects steroidogenesis and folliculogenesis, resulting in delayed puberty onset. The present study was conducted to clarify the mechanism underlying the adverse effect of LPS on the delayed puberty in female rats. LPS was daily injected for 5 days ($50{\mu}g/kg$, PND 25-29) to treated animals and the date at VO was evaluated through daily visual examination. At PND 39, animals were sacrificed, and the tissues were immediately removed and weighed. Among the reproductive organs, the weights of the ovaries and oviduct from LPS-treated animals were significantly lower than those of control animals. There were no changes in the weights of uterus and vagina between the LPS-treated and their control animals. immunological challenge by LPS delayed VO. Multiple corpora lutea were found in the control ovaries, indicating ovulations were occurred. However, none of corpus luteum was present in the LPS-treated ovary. The transcription level of steroidogenic acute regulatory protein (StAR), CYP11A1, CYP17A1 and CYP19 were significantly increased by LPS treatment. On the other hand, the levels of $3{\beta}$-HSD, $17{\beta}$-HSD and LH receptor were not changed by LPS challenge. In conclusion, the present study demonstrated that the repeated LPS exposure during the prepubertal period could induce multiple alterations in the steroidogenic machinery in ovary, and in turn, delayed puberty onset. The prepubertal LPS challenge model used in our study is useful to understand the reciprocal regulation of immune (stress) - reproductive function in early life.

Effects of L-proline on the Growth Performance, and Blood Parameters in Weaned Lipopolysaccharide (LPS)-challenged Pigs

  • Kang, Ping;Zhang, Lili;Hou, Yongqing;Ding, Binying;Yi, Dan;Wang, Lei;Zhu, Huiling;Liu, Yulan;Yin, Yulong;Wu, Guoyao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1150-1156
    • /
    • 2014
  • This trail was conducted to study the effect of L-proline on the growth performance, and blood parameter in the weaned lipopolysaccharide (LPS)-challenged pigs. Thirty six pigs ($9.13{\pm}0.85$ kg) were assigned randomly to dietary treatments in a $2{\times}3$ factorial arrangement in a 20-d growth assay. Factors were intraperitoneal injection with saline or LPS, and three dietary L-proline supplement levels (0%, 0.5%, or 1.0%). On d 10, blood samples were collected at 3 h after LPS (100 ${\mu}g$ LPS/kg body weight [BW]) or saline injection. On d 20 of the trial, all pigs were orally administrated D-xylose (0.1 g/kg BW) at 2 h, and blood samples were collected at 3 h after LPS or saline injection. As a result, dietary supplementation with 0.5% proline had a tendency to increase average daily gain (ADG) in piglets during d 10 to 20 (p = 0.088). Without LPS challenge, dietary supplementation with 1.0% proline had no effect on growth hormone (GH) concentrations on d 10 (p>0.05), but decreased it after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for GH concentrations on d 10 (p<0.05). Dietary supplementation with 1.0% proline decreased glucagon concentration on d 10 after LPS challenge (p<0.05). In addition, dietary supplementation with proline increased superoxide dismutase (SOD) activity significantly on d 10 and 20 (p<0.05), and 1.0% proline increased heat shock proteins-70 concentration on d 10 (p<0.05). Moreover, proline supplementation increased diamine oxidase (DAO) concentrations after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for DAO (p<0.05). Furthermore, dietary supplementation with 1.0% proline increased the D-xylose level when no LPS challenge (p<0.05). These results indicate that proline supplementation could improve growth performance, increase SOD activities, and has a positive effect on the gastrointestinal tract digestibility in early weaned pigs.

Effects of Achyranthes Bidentata Polysaccharide on Growth Performance, Immunological, Adrenal, and Somatotropic Responses of Weaned Pigs Challenged with Escherichia coli Lipopolysaccharide

  • Guo, Guanglun;Liu, Yulan;Fan, Wei;Han, Jie;Hou, Yongqing;Yin, Yulong;Zhu, Huiling;Ding, Binying;Shi, Junxia;Lu, Jing;Wang, Huirong;Chao, Jin;Qu, Yonghua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1189-1195
    • /
    • 2008
  • A study was conducted with 48 weaned barrows ($28{\pm}3d$, $8.45{\pm}0.14kg$) to determine the effect of Achyranthes bidentata polysaccharide (ABPS) supplementation on pig performance, immunological, adrenal and somatotropic responses following Escherichia coli lipopolysaccharide (LPS) challenge. The experiment was a $2{\times}2$ factorial design; the main factors included diet (supplementation with 0 or 500 mg/kg ABPS) and immunological challenge (LPS or saline). On d 14 and 21 of the trial, pigs were given an intraperitoneal injection with either $100{\mu}g/kg$ BW of LPS or an equivalent amount of sterile saline. Blood samples were obtained 3 h after injection for analysis of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), prostaglandin $E_2$ ($PGE_2$), cortisol, growth hormone (GH), insulin-like growth factor (IGF)-I and immunoglobulin G (IgG). On d 2 after LPS challenge, peripheral blood lymphocyte proliferation (PBLP) was measured. LPS administration decreased average daily feed intake (ADFI) (p<0.05), had a tendency to decrease average daily gain (ADG) (p<0.10) during both the first and second challenge periods and increased (p<0.05) feed:gain ratio only during the first challenge period. ABPS tended to improve ADG (p<0.10) during the first challenge period, and improved ADG (p<0.05) and tended to improve ADFI (p<0.10) during the second challenge period. ABPS did not affect feed:gain ratio. An interaction (p<0.05) between LPS challenge and diet was observed for the plasma concentrations of TNF-${\alpha}$, $PGE_2$ and cortisol after both LPS challenges such that, among LPS-treated pigs, pigs fed the ABPS diet were lower for these indices than those receiving the control diet. In contrast, pigs fed the ABPS diet had higher IGF-I (p<0.05) compared with those fed the control diet. No effect of diet, LPS challenge or both on GH and IgG was observed after both LPS administrations. LPS challenge increased PBLP when these cells were incubated with $8{\mu}g/ml$ of LPS during both the challenge periods, and did likewise when incubated with $8{\mu}g/ml$ of concanavalin A only after the first challenge. ABPS had no effect on PBLP. These data demonstrate that ABPS alters the release of pro-inflammatory cytokines following an immunological challenge, which might enable pigs to achieve better performance.

Influences of dietary flavonoid (quercetin) supplementation on growth performance and immune response of growing pigs challenged with Escherichia coli lipopolysaccharide

  • Park, Jae-Hong;Sureshkumar, Shanmugam;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.605-613
    • /
    • 2020
  • This study was conducted to evaluate the effects of dietary supplementation of plant flavonoid (quercetin) on immune parameters, growth performance, and nutrient digestibility in growing pigs challenged with Escherichia coli lipopolysaccharide (LPS). A total of 40 crossbred ([Landrace × Yorkshire] × Duroc) growing pigs; initial body weight (BW) of 26.95 ± 1.26 kg were used in a six-week experimental trial. Pigs were randomly allocated into one of four treatment groups in a 2 × 2 factorial arrangement with the following factors; without LPS challenge and with LPS challenge (day 21) supplemented with or without 0.1% flavonoid according to BW (2 replicate pens per treatment with 2 gilts and 3 barrows per pen). The single-dose LPS (100 ug / kg BW) injection showed trends tended to be increased in interleukin-6 (IL-6) after 2 h and 6 h of challenge compared with unchallenged pigs. However, other measured immune indices (white blood cell, immunoglobulin G, lymphocyte, and tumor necrosis factor), growth performance, and nutrient digestibility were not significantly different between challenged and non-challenged animals. The supplementation of flavonoid significantly increased (p < 0.05) average daily gain (ADG) during day 0-21, tended to increase dry matter and nitrogen digestibility, significantly reduced IL-6, increased Ig-G and WBC concentrations and increased lymphocytes percentage regardless of LPS challenge.

Effects of Salmonella typhymurium Lipopolysaccharide Challenge on the Performance, Immune Responses and Zinc Metabolism of Laying Hens Supplemented with Two Zinc Sources

  • Cheng, Tingshui;Guo, Yuming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1717-1724
    • /
    • 2004
  • The study was conducted to determine the effect of Salmonella typhymurium lipopolysaccharide (LPS) challenge on egg-laying performance, inflammatory response, zinc metabolism in layer fed diets supplemented with organic or inorganic zinc since 3-wk-old. The three dietary treatments were corn-soybean meal basal diet without supplemental zinc or with supplemental zinc at 60 mg/kg zinc from $ZnSO_4$ or zinc amino acid complex (ZnAA). At the age of 58 wk-old, twelve hens from each dietary treatment were allotted into two sub-groups. On day 1, 3, 5, 7 of the $58^{th}$ week of age, six birds of one sub-group were injected intraperitoneally (i.p.) with 2 ml LPS (1.0 $\ell$/ml) or sterile saline. Neither zinc source ${\times}$ immune challenge interaction nor zinc source effect on egg production performance was observed (p>0.05), LPS-challenge decreased egg production (p<0.04) and increased percentage of cracked eggs (p <0.01). With LPS challenged, the fever response of hens fed ZnAA peaked and subsided earlier than in hens fed $ZnSO_4$ or basal diet. Serum IL-1$\beta$ at 3 h was higher (p<0.01), but lower (p<0.001) at 12 h post-challenge with LPS in hens fed ZnAA than $ZnSO_4$. In salinetreated groups, serum IL 1$\beta$ was higher in hens fed ZnAA than the basal diet at 3 h post-injection (p<0.01). LPS-challenged birds had lower serum zinc and higher zinc sequestered in liver and spleen (p<0.001). In saline-treated birds, there was no difference in zinc concentration of serum, liver and spleen among different dietary treatments (p>0.05). Supplementation of 60 mg/kg zinc from either ZnAA or $ZnSO_4$ significantly (p<0.05) elevated metallothionein (MT) concentration in liver and spleen. MT concentration in liver of birds fed ZnAA diet was higher than in those fed $ZnSO_4$ diet (p<0.05). The magnitude of increase of hepatic and splenic MT due to LPS challenge was higher by supplementation of ZnAA than $ZnSO_4$. The results suggest that zinc amino acid complex enhanceed MT synthesis and zinc sequestered in liver and spleen and increased the sensitivity to immune response due to LPS challenge.

Effects of Acanthopanax senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of Pro-inflammatory Cytokines Genes in Challenged Weaned Piglets

  • Han, Jie;Bian, Lianquan;Liu, Xianjun;Zhang, Fei;Zhang, Yiran;Yu, Ning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1035-1043
    • /
    • 2014
  • To investigate the effect of dietary Acanthopanax senticosus polysaccharide (ASPS) on growth performance, immunity, blood parameters and mRNA expression of pro-inflammatory cytokines in immunologically challenged piglets, an experiment employing $2{\times}2$ factorial arrangement concerning dietary ASPS treatment (0 or 800 mg/kg) and immunological challenge (lipopolysaccharide [LPS] or saline injection) was conducted with 64 crossbred piglets (weaned at 28 d of age, average initial body weight of $7.25{\pm}0.21kg$) assigned to two dietary ASPS treatments with 8 replicates of 4 pigs each. Half of the piglets of per dietary treatment were injected with LPS or saline on d 14. Blood samples were obtained at 3 h after immunological injection on d 14 and piglets were slaughtered to obtain spleen samples on d 21. Dietary ASPS did not affect average daily gain (ADG) (p = 0.634), average daily feed intake (ADFI) (p = 0.655), and gain:feed (p = 0.814) prior to LPS challenge. After LPS challenge, for LPS-challenged pigs those fed ASPS had higher ADG and ADFI than the non-supplemented group (p<0.05), and an interaction between $LPS{\times}ASPS$ was observed on the two indices (p<0.05). Dietary ASPS improved lymphocyte proliferation among saline-injected and LPS-injected pigs (p<0.05). Interaction between $LPS{\times}ASPS$ was also revealed on lymphocyte proliferation (p<0.05). Circulatory concentration of IgG was influenced neither by ASPS (p = 0.803) or LPS (p = 0.692), nor their interaction (p = 0.289). Plasma concentration and spleen mRNA expression of interleukin-1beta (IL-$1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-${\alpha}$ were induced to increase (p<0.05) by LPS challenge, in contrast, these indices were decreased by dietary ASPS (p<0.05), and interactions were found on these cytokines (p<0.05). For LPS-challenged pigs, dietary ASPS also reduced the circulating concentration and spleen mRNA expression of IL-$1{\beta}$, IL-6 as well as TNF-${\alpha}$ (p<0.05). The interaction between $LPS{\times}ASPS$ was also observed on the circulating concentration of insulin-like growth factor-I, ${\alpha}$-acid glycoprotein (${\alpha}$-AGP), nonesterified fatty acid, and glucose (p<0.05). The results of this study demonstrate that dietary ASPS can modulate the release of pro-inflammatory cytokines during immunological challenge, which might enable piglets to achieve better growth performance.

Effect of Copper on Plasma Ceruloplasmin and Antioxidant Ability in Broiler Chickens Challenged by Lipopolysaccharide

  • Song, Zhigang;Zhu, Lixian;Zhao, Tong;Jiao, Hongchao;Lin, Hai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1400-1406
    • /
    • 2009
  • The effects of dietary copper (Cu) supplementation in broiler chickens challenged with a single injection of Salmonella typhymurium lipopolysaccharide (LPS) on the antioxidant capacity and plasma levels of ceruloplasmin (Cp) were evaluated. The broiler chickens were provided with a basal diet or diets supplemented with 8 and 50 mg/kg Cu from 1d of age. At 25d of age, 48 chickens with similar body weight were selected from each diet. Half of the chickens in each dietary treatment were injected intraperitoneally (i.p.) with LPS (1 mg/kg body weight). The other half was injected with saline, serving as the control. Body weight gain and feed consumption were significantly suppressed by LPS challenge during the first 12-h after injection, regardless of dietary Cu levels. Feed efficiency was reduced by LPS injection during the 72-h experimental period. Dietary Cu levels had no significant effect (p>0.05) on the plasma ceruloplasmin concentrations in chickens injected with saline. In contrast, high dietary level of Cu elevated plasma Cp levels in chickens with LPS challenge. Short-term LPS challenge had no significant effect on the antioxidant ability of broilers, as indicated by superoxide dismutase, ferric reducing/antioxidant power and the thiobarbituric acid reacting substances in the plasma. The result suggests that high dietary Cu level (as much as 50 mg/kg supplementation) is favorable for coping with short-term LPS challenge through upregulating plasma Cp levels.