Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13828

Effects of L-proline on the Growth Performance, and Blood Parameters in Weaned Lipopolysaccharide (LPS)-challenged Pigs  

Kang, Ping (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Zhang, Lili (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Hou, Yongqing (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Ding, Binying (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Yi, Dan (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Wang, Lei (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Zhu, Huiling (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Liu, Yulan (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Yin, Yulong (Hubei key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Wu, Guoyao (Department of Animal Science, Texas A & M University, College Station)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.8, 2014 , pp. 1150-1156 More about this Journal
Abstract
This trail was conducted to study the effect of L-proline on the growth performance, and blood parameter in the weaned lipopolysaccharide (LPS)-challenged pigs. Thirty six pigs ($9.13{\pm}0.85$ kg) were assigned randomly to dietary treatments in a $2{\times}3$ factorial arrangement in a 20-d growth assay. Factors were intraperitoneal injection with saline or LPS, and three dietary L-proline supplement levels (0%, 0.5%, or 1.0%). On d 10, blood samples were collected at 3 h after LPS (100 ${\mu}g$ LPS/kg body weight [BW]) or saline injection. On d 20 of the trial, all pigs were orally administrated D-xylose (0.1 g/kg BW) at 2 h, and blood samples were collected at 3 h after LPS or saline injection. As a result, dietary supplementation with 0.5% proline had a tendency to increase average daily gain (ADG) in piglets during d 10 to 20 (p = 0.088). Without LPS challenge, dietary supplementation with 1.0% proline had no effect on growth hormone (GH) concentrations on d 10 (p>0.05), but decreased it after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for GH concentrations on d 10 (p<0.05). Dietary supplementation with 1.0% proline decreased glucagon concentration on d 10 after LPS challenge (p<0.05). In addition, dietary supplementation with proline increased superoxide dismutase (SOD) activity significantly on d 10 and 20 (p<0.05), and 1.0% proline increased heat shock proteins-70 concentration on d 10 (p<0.05). Moreover, proline supplementation increased diamine oxidase (DAO) concentrations after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for DAO (p<0.05). Furthermore, dietary supplementation with 1.0% proline increased the D-xylose level when no LPS challenge (p<0.05). These results indicate that proline supplementation could improve growth performance, increase SOD activities, and has a positive effect on the gastrointestinal tract digestibility in early weaned pigs.
Keywords
L-proline; Growth Performance; Blood Parameters; Gastrointestinal Tract Digestibility; Early Weaned Pigs; Lipopolysaccharide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang, J., L. Chen, P. Li, X. Li, H. Zhou, F. Wang, D. Li, Y. Yin, and G. Wu. 2008. Gene expression is altered in piglets small intestine by weaning and dietary glutamine supplementation. J. Nutr. 138:1025-1032.
2 Wu, G. 1997. Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 272:G1382-1390.
3 Wu, G., D. A. Knabe, N. E. Flynn, W. Yan, and S. P. Flynn. 1996. Arginine degradation in developing porcine enterocytes. Am. J. Physiol. Gastrointest. Liver. Physiol. 271:G913-G919.
4 Wu, G., F. W. Bazer, R. C. Burghardt, G. A. Johnson, S. W. Kim, D. A. Knabe, P. Li, X. Li, J. R. McKnight, M. C. Satterfield, and T. E. Spencer. 2011. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40: 1053-1063.   DOI   ScienceOn
5 Wu, G., F. W. Bazer, S. Datta, G. A. Johnson, P. Li, M. C. Satterfield, and T. E. Spencer. 2008. Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691-702.   DOI
6 Wu, G. Y., N. E. Flynn, and D. A. Knabe. 2000. Enhanced intestinal synthesis of polyamines from proline in cortisoltreated piglets. Am. J. Physiol. Endocrinol. Metab. 279:E395-E402.
7 Namikawa, T., I. Fukudome, H. Kitagawa, T. Okabayashi, M. Kobayashi, and K. Hanazaki. 2012. Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology 82: 147-152.   DOI   ScienceOn
8 NRC. 1998. Nutrient Requirements of Swine. 10th ed. National Academic Press, Washington, DC, USA.
9 Ohyama, N., H. Sato, and T. E. Tanaka. 2001. Epidermal growth factor enhances lipopolysaccharide-induced procoagulant activity on the cell surface of endothelial cells. Blood Coagul. Fibrinolysis 12:385-389.   DOI   ScienceOn
10 Phang, J. M. and W. Liu. 2012. Proline metabolism and cancer. Front. Biosci. 17:1835-1845.   DOI
11 Samuels, S. E., H. L. Aarts, and R. O. Ball. 1989. Effect of dietary proline on proline metabolism in the neonatal pig. J. Nutr. 119: 1900-1906.
12 Sorrells, A. D., S. D. Eicher, K. A. Scott, M. J. Harris, E. A. Pajor, D. C. Jr. Lay, and B. T. Richert. 2006. Postnatal behavioral and physiological responses of piglets from gilts housed individually or in groups during gestation. J. Anim. Sci. 84: 757-766.
13 Soto, L., A. I. Martin, S. Millan, E. Vara, and A. Lopez-Calderon. 1998. Effects of endotoxin lipopolysaccharide administration on the somatotropic axis. J. Endocrinol. 159:239-246.   DOI   ScienceOn
14 Kaplan, M., E. A. Mutlu, M. Benson, J. Z. Fields, A. Banan, and A. Keshavarzian. 2007. Use of herbal preparations in the treatment of oxidant-mediated inflammatory disorders. Complement. Ther. Med. 15:207-216.   DOI   ScienceOn
15 Suffredini, A. F., G. Fantuzzi, R. Badolato, J. J. Oppenheim, and N. P. O'Grady. 1999. New insights into biology of the acute phase response. J. Clin. Immunol. 19:203-214.   DOI   ScienceOn
16 Hosoda, N., M. Nishi, M. Nakagawa, Y. Hiramatsu, K. Hioki, and M. Yamamoto. 1989. Structural and functional alterations in the gut of parenterally or enterally fed rats. J. Surg. Res. 47: 129-133.   DOI   ScienceOn
17 Kang, P., H. L. Xiao, Y. Q. Hou, B. Y. Ding, Y. L. Liu, H. L. Zhu, Q. Z. Hu, Y. Hu, and Y. L. Yin. 2010. Effects of astragalus polysaccharides, achyranthes bidentata polysaccharides, and acantbepanax senticosus saponin on the performance and immunity in weaned pigs. Asian Australas. J. Anim. Sci. 23: 750-756.   과학기술학회마을   DOI
18 Lay, D. C. Jr., H. G. Kattesh, J. E. Cunnick, M. J. Daniels, G. Kranendonk, K. A. McMunn, M. J. Toscano, and M. P. Roberts. 2011. Effect of prenatal stress on subsequent response to mixing stress and a lipopolysaccharide challenge in pigs. J. Anim. Sci. 89:1787-1794.   DOI   ScienceOn
19 Mansoori, B., H. Nodeh, M. Modirsanei, S. Rahbari, and P. Aparnak. 2009. D-Xylose absorption test: A tool for the assessment of the effect of anticoccidials on the intestinal absorptive capacity of broilers during experimental coccidiosis. Anim. Feed Sci. Technol. 148:301-308.   DOI   ScienceOn
20 Moroi, Y., M. Mayhew, J. Trcka, M. H. Hoe, Y. Takechi, F. U. Hartl, J. E. Rothman, and A. N. Houghton. 2000. Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc. Natl. Acad. Sci. USA. 97:3485-3490.   DOI
21 Buege, J. A. and S. D. Aust. 1978. Microsomal lipid peroxidation. Methods. Enzymol. 52:302-310.   DOI
22 Baker, D. H. 1977. Amino acid nutrition of the chick. In: Advances in Nutrition Research (Ed. H. H. Draper), pp. 299-335, Plenum, New York, NY, USA.
23 Ball, R. O., J. L. Atkinson, and H. S. Bayley. 1986. Proline as an essential amino acid for the young pig. Br. J. Nutr. 55:659-668.   DOI   ScienceOn
24 Bertolo, R. F., J. A. Brunton, P. B. Pencharz, and R. O. Ball. 2003. Arginine, ornithine, and proline interconversion is dependent on small intestinal metabolism in neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 284:E915-E922.   DOI   ScienceOn
25 Buonocore, G. and F. Groenendaal. 2007. Anti-oxidant strategies. Semin. Fetal Neonatal Med. 12:287-295.   DOI   ScienceOn
26 Dignass, A. U. and A. Sturm. 2001. Peptide growth factors in the intestine. Eur. J. Gastroenterol. Hepatol. 13:763-770.   DOI   ScienceOn
27 El Darawany, A. A. and H. M. Farghaly. 1999. Some blood biochemical as indicator to improve productive and reproductive performance in rabbit population. In: 2. International Conference on Rabbit Production in Hot Climates (A. Testik and M. Baselga). Zaragoza: CIHEAM, p. 139-145.
28 El Golli-Bennour, E. and H. Bacha. 2011. Hsp70 expression as biomarkers of oxidative stress, mycotoxins' exploration. Toxicology 287:1-7.   DOI   ScienceOn
29 Roecker, R., G. M. Junges, D. D. de Lima, J. G. da Cruz, A. T. Wyse, and D. D. Dal Magro. 2012. Proline alters antioxidant enzyme defenses and lipoperoxidation in the erythrocytes and plasma of rats: in vitro and in vivo studies. Biol. Trace Elem. Res. 147:172-179.   DOI   ScienceOn
30 Wei, J. W., R. J. Carroll, K. K. Harden, and G. Wu. 2012. Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031-2035.   DOI
31 Gyr, K., R. H. Wolf, and O. Felsenfeld. 1974. Intestinal absorption of D-xylose and folic acid in protein-deficient patas monkeys (Erythrocebus patas). Am. J. Clin. Nutr. 27:350-354.