• Title/Summary/Keyword: LPLI

Search Result 56, Processing Time 0.022 seconds

Reaction Characteristics of LPG Fuel and Rubber Parts of Fuel Supply System in Liquid Phase LPG Injection (LPLi) System (LPG액상분사식(LPLi) 엔진에서 연료와 연료공급계통 고무류 부품사이의 반응성 연구)

  • Kim, Chang-Up;Park, Cheol-Woong;Kang, Kern-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.272-277
    • /
    • 2009
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the most promising fuel supply systems for LPG vehicles. To investigate the reaction characteristics of LPG with rubber parts in LPLi system, various rubbers were tested. The results showed that the amount of residue from the cover rubber of a fuel pump was increased about 10 times after testing. Furthermore, the amount of sulfur and nitrogen species which are considered as main sources of deposit formation in LPLi fuel injectors were also found to be higher than those in original LPG fuel. In addition, these residues made the core parts of LPLi injector such as needle and nozzle, partially worn, which eventually causes leakage in LPLi injectors.

Reaction Characteristics of LPG fuel in LPLi fuel supply system (LPLi연료시스템의 LPG연료 반응성 연구)

  • Kim, Chang-Up;Park, Cheol-Woong;Kang, Kern-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2904-2909
    • /
    • 2008
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the more promising fuel supply systems for LPG vehicles. To investigate the characteristics of LPG residue in LPLi system, various rubbers were reacted with LPG fuels. The results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And these residues made the core parts of LPLi injector such as a neddle and a nozzle, partially worn, which eventually causes a leakage in LPLi injectors.

  • PDF

Reduction of Beating noise at LPLi pump (LPLi 연료펌프의 맥놀이 소음 저감 연구)

  • Gang, Tae-Sik;Sim, Jae-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.161-165
    • /
    • 2005
  • Until now LPG car has drived used to mixer and vaporizer. So LPG car always has problems back fire and when in the winter. LPG Car's Fuel consumption is rather than gasoline. But LPLi Fuel pump located in the fuel tank is directly injection in the engine. So Fuel consumption is better than LPG mixer system and result to reduced exhaust gas. In this paper to reduction of beating noise of LPLi(liquid phase LPG Injection) fuel pump. General speaking we know, beating noise is occur to near frequency each of pump. So we Modification of RPM through chang of amature turn number and area of dimension of the pump's body.

  • PDF

Study on Engine Performance and Characteristics of Exhaust Gas Properties according to various EGR Feeding Methods in LPLi Engine (EGR 유입방식에 따른 LPLi 엔진 성능 및 배기 배출물 특성에 관한 연구)

  • 곽호철;명차리;박심수;천동필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.7-14
    • /
    • 2003
  • Recently, LPG has been considered as more environmental friendly fuel than liquid fuels for vehicles. However because LPLi engine has the strong point that not only increases the volumetric efficiency and cold startability, but also decreases unburned hydrocarbon exhaust emission in warm-up condition, much attention has moved to development of the Liquid Phase LPG injection (LPLi) system from the mixer type LPG engine. To reduce exhaust NOx, this study investigated the effect of EGR with LPLi engine and determined optimized EGR feeding position and distribution. In addition, engine stability, performance, and exhaust emission level were evaluated.

Prediction of Fuel Properties on LPLi System with an External Fuel Pump (외장형 연료펌프를 사용한 LPLi시스템에서 연료의 상태량 변화 예측)

  • Kim, Jae-Hyung;Yoon, Yu-Bin;Park, Young-Joon;Song, Chun-Sub;Lee, Seang-Woak;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • The LPG(Liquefied Petroleum Gas) fuel attracts attention as a clean alternative fuel. In order to further reduce the exhaust emission and improve performance in LPG engines, the LPLi(Liquid Phase LPG Injection) system is used. In LPLi system, the fuel pump performance is important for keeping the LPG over it's saturated vapor pressure. An external fuel pump is needed to improve the durability for LPG engines. This paper predicted the variation of fuel properties on the LPLi system with an external fuel pump. From each component's thermodynamic model, an 1-D simulation is developed for LPLi system with an external fuel pump. Then the 1-D simulation data analyzed and compared with the rig-test. The 1-D simulation and the rig-test produced similar results.

A Study on the Development of Icing by Injection of LPG in the Liquid Phase around Injector (I) (LPG 액상 분사 시 인젝터 주위의 Icing 현상에 관한 연구 (I))

  • 김우석;박정철;박심수;유재석;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Recently, LPLi(Liquied-Phase LPG injection) system is studied for the new stringent emission regulations. But , there are some problems to be solved such as injector tip icing and fuel leakage for LPLi system development. In this paper, the icing problem near injector tip which leads to difficulty of accurate A/F control was studied and reported. Icing of injector tip and port wall was observed at all the cases in this study regardless of injection duration and angle, air humidity change. The spray angle of LPLi was observed approximately two times wider than that of Gasoline injection. This makes the LPLi spray collide with intake port around injector tip. Temperature of the wetted area was decreased and icing of water vapor contained in intake air because of evaporation of the fuel film. The ice of the injector tip and port wall is also affected by the materials related to heat transfer.

Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine (액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

Reaction Characteristics of Rubbers and LPG fuels in LPLi Fuel Supply System (고무류 반응특성이 LPG액상공급시스템의 연료분사기 성능에 미치는 영향)

  • Kim, Chang-Up;Park, Cheol-Woong;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type (the second generation technology) fuel supply system. To investigate the characteristics of LPG residue in liquid phase LPG injection system, various rubbers in LPG fuel system were reacted with LPG fuels during 3 months. The experimental results showed that the residue of a cover rubber in a fuel pump after test increased 10 times higher than that before test. Furthermore, the amount of sulfur, nitrogen species which are considered as main sources in deposit formation in the LPLi fuel injector were also found to be higher than that in original LPG fuel. And rubber properties of fuel pump cover were decreased after reaction test compared with those of the original rubber. Therefore, the rubber for fuel pump cover is not suitable for a proper material in LPLi fuel system. And these results can provide more information if a motor company shares the data of core rubber parts in field test LPLi vehicles.

  • PDF

An Experimental Study on the Leakage Characteristics and Durability Evaluation of an LPLi Injector (LPLi 인젝터의 누설특성 및 내구평가에 관한 실험적 연구)

  • Choi, Young;Kim, Chang-Up;Oh, Seung-Mook;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.204-210
    • /
    • 2007
  • The worldwide energy problem and global warming cause the need of alternative fuels which feature low carbon-dioxide emission and another energy source. Liquefied Petroleum Gas (LPG) is one of the alternative fuels widely used as domestic and transportational fuel. The third generation LPLi fuel supply system has merits in the increase of engine power and low emissions. The injectors used in LPLi system should overcome a leakage problem and satisfy the durability conditions. Therefore, 1000 hour durability test of the injectors was carried out throughout this research. First, the spray pattern and the penetration length of the selected injectors is graphically shown. Next, the leakage amount with respect to the injection cycle is introduced. Finally, the shapes of nozzle holder and nozzle tip after durability test was investigated by analyzing the microscopic image of the injector tip. The variation in the shape of nozzle tip mainly due to the residue of rubber materials is found to be the reason for leakage.

  • PDF

Icing Characteristics of Liquid Phase LPG Injection According to Butane and Propane Mixing Rates (부탄과 프로판 혼합비율에 따른 액상 LPG 분사시 Icing 특성)

  • Kim, Yung-Jin;Cho, Won-Joon;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • LPG(Liquified Petroleum Gas) fuel for vehicles has lots of advantages such as low emission level, cheaper fuel cost and enough infrastructure. Therefore it arouses interest as an alternative engine to reduce emission of diesel engines. Especially MPI(Multi Point Injection) type LPLi(Liquid Phase LPG injection) system could have overcome the disadvantages of mixer types such as low engine performance, decreased charging efficiency and cold starting difficulty. However ice formation on the nozzle tip and intake port due to the freezing of moisture around the components is often observed in LPLi systems. This icing phenomenon is the direct cause of unstable engine combustion, resulting in engine emissions. Therefore in this research, a spray visualization test for LPG injection was carried out to obtain the basic information of an LPLi injector, then the effects of butane and propane mixing rates on ice formation at the intake port and nozzle tip was investigated. As a result, the icing characteristics of them showed contrary results according to the mixing rates.