This study designed and implemented a system to extract of vowel from a word. The system is comprised of a voice feature extraction module and a neutral network module. The voice feature extraction module use a LPC(Linear Prediction Coefficient) model to extract a voice feature from a word. The neutral network module is comprised of a learning module and voice recognition module. The learning module sets up a learning pattern and builds up a neutral network to learn. Using the information of a learned neutral network, a voice recognition module extracts a vowel from a word. A neutral network was made to learn selected vowels(a, eo, o, e, i) to test the performance of a implemented vowel extraction recognition machine. Through this experiment, could confirm that speech recognition module extract of vowel from 4 words.
본 논문에서는 다양한 전화선 채널에서 수집된 한국통신(KT)의 데이터베이스를 이용하여 인식 시스템의 성능을 향상시키기 위한 효율적인 특징벡터 및 전처리방법을 연구하였다. 먼저 잡음 및 주변 환경 변화에 강인한 갓으로 알려져 있는 특징벡터들을 이용한 인식 성능을 비교하고, 가중 켑스트랄 거리측정 방법을 이용하여 인식시스템의 성능 향상을 검증하였다. 실험 결과, KT의 인식 시스템에서 이용하는 LPC 켑스트럼의 경우에 비하여 PLP(Perceptual Linear Prediction)과 MFCC)Mel Frequency Cepstral Coefficient)등에 대하여 인식률이 향상되었다. 켑스트럼간의 거리측정에 있어서는 RPS(Root Power Sums)와 BPL(Band Pass Lifter)과 같은 가중 켑스트랄 거리측정 함수들이 인식성능 향상에 도움을 주었다. 스펙트럼 차감법(Spectral Subtraction)의 적용은 왜곡에 의한 효과가 커서 인식률이 저하되었지만, RASTA(RelAtive SpecTrAl) 처리방법, CMS(Cepstral Mean Subtraction), SBR(Signal Bias Removal)의 적용시에는 인식 성능 향상을 보였다. 특히, CMS 방법은 간편하면서도 높은 인식 성능 향상을 보였다. 마지막으로, CMS의 실시간 구현을 위한 방법들의 인식 성능을 비교하고, 인식 성능 저하를 막기 위한 개선책을 제시하였다.
본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.
The Autofom is a equipment for predicting the amount of pig carcasses meat using the 16 ultrasonic sensors to measure in real time and it was established in Dodram LPC in Gyeonggi Province of Korea for the first time. This study was carried out to validate the reliability of Autofom statistically and to establish guideline for developing a analytic formula through comparing the measurement between Autofom and dissection. The ham parts of sixty-six pig carcasses were measured with Autofom and by two experimental performers. The weight means and standard deviations of ham parts including bone by measurements with Autofom and dissection were $10.69{\pm}0.81kg$ and $10.77{\pm}0.94kg$, respectively a strong positive correlation (P<0.01) was identified, with a coefficient of determination ($R^2$) of 0.82. The weight means and standard deviations of lean ham parts by measurements with Autofom and dissection were $7.41{\pm}0.58kg$ and $7.42{\pm}0.89kg$, respectively a strong positive correlation (P<0.01) was identified, with a coefficient of determination ($R^2$) of 0.72. The root mean square errors of two groups were 0.40 and 0.50, respectively.
This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.
화자확인에서 화자내 변이, 잡음환경, 그리고 학습환경과 인식 환경의 불일치는 화자확인 시스템이 실용화될 수 없는 가장 큰 원인이다. 본 연구에서는, 실제 환경에 강인한 화자 확인 시스템의 구현에 초점을 맞추어 음성 전처리 과정인 잡음환경에 강인한 끝점추출 알고리즘, 잡음제거 및 마이크특성 보상기법, LPG(Linear Predictive Coefficient)켑스트럼 가중치에 의한 화자간 변별력 향상 기법을 제안한다. 실험 결과, LPC잔차신호(residue)를 이용한 끝점추출 알고리즘을 사용한 경우 약 17.65% 가량의 끝점 추출 에러율을 향상시켰으며, 제안한 잡음제거 및 마이크특성 보상기법을 사용한 경우 다른 마이크 환경에서 화자 오인식율이 약 36.93% 가량 개선되었다. 또한, 제안한 LPC켑스트럼 가중치에 의한 화자간 변별력 향상 기법은 평균 화자 오인식율을 약 6.515% 향상시켰다.
This study is concerned with a method which helps human to generate EMG signals accurately and consistently to make reliable design samples of function discriminator for prosthetic arm control. We intend to ensure a signal accuracy and consistency by training human as a signal generation source. For the purposes, we construct a human training system using a digital computer, which generates visual graphes to compare real target motion trajectory with the desired one, to observe EMG signals and their features. To evaluate the effect which affects a feature variance and a feature separability between motion classes by the human training system, we select 4 features such as integral absolute value, zero crossing counts, AR coefficients and LPC cepstrum coefficients. We perform a experiment four times during 2 months. The experimental results show that the hu- man training system is effective for accurate and consistent EMG signal generation and reduction of a feature variance, but is not correlated for a feature separability, The cepstrum coefficient is the most preferable among the used features for reduction of variance, class separability and robustness to a time varing property of EMG signals.
본 논문에서는 ISF 계수의 순서화 성질을 이용하여 분할구조 벡터양자화기의 단점을 보완하여 ISF 계수 양자화의 성능을 높이는 알고리듬을 제안하고, 이를 이용한 광대역 음성 부호화기용 ISF 계수 양자화기를 설계한다. 16차 이상의 광대역 코덱의 ISF 계수는 계산량과 메모리 사용을 줄이기 위해서 분할구조의 벡터 양자화기를 사용한다. 분할구조 양자화기는 ISF 계수간의 상관도를 충분히 활용하지 못하는 단점이 발생한다. 제안하는 알고리듬은 이러한 단점을 극복하기 위하여 ISF 계수의 순서화 성질을 이용한다. ISF 계수의 순서화 성질을 이용하여 각 서브벡터의 불필요한 코드북 (Codebook Redundancy)을 검색할 수 있다. 이러한 불필요한 코드북은 ISF 계수의 순서화 성질, ISF 계수 예측과정과 기존 코드북의 보간법 (Interpolation)을 통해 적응적인 확장된 코드북으로 교체되어 양자화기의 성능을 향상시킨다. 제안된 알고리듬은 기존의 분할구조 양자화기에서 사용되지 못했던 17 %가량의 불필요한 코드북 인덱스를 적응적인 확장된 코드북에 할당하여, 표준화된 코덱인 AMR-WB의 ISF 계수 양자화기에 비해서 주파수 왜곡 관점에서 약 2 bit 가량의 이득을 보는 결과를 얻었다.
LSP (Line Spectrum Pairs) 파라미터는 음성코덱 (codec)이나 인식기에서 음성신호를 분석하여 전송형이나 저장형 파라미터로 변환되어, 주로 저전송률 음성부호화기에 사용된다. 그러나 LPC (Linear Predictive Coding) 계수를 LSP로 변환하는 방법이 복잡하여 계산시간이 많이 소요된다는 단점이 있다. 기존의 LSP변환 방법 중 음성 부호화기에서 주로 사용하는 실근 (real root)방법은 근을 구하기 위해 주파수 영역을 순차적으로 검색하기 때문에 계산시간이 많이 소요되는 단점을 갖는다. 본 논문에서 기존의 실근 방법과 비교 평가한 알고리즘은 첫 번째 검색 대역에 멜 스케일 (met scale)을 사용하였고, 두 번째는 LSP 파라미터의 분포 특성을 조사하여 이를 토대로 검색구간의 순서와 검색간격을 달리 하였다. 실험결과, 기존의 실근 방식에 비하여 두 가지 방식 모두가 변환시간의 47% 이상이 감소되는데 반하여 동일한 근을 찾음을 알 수가 있었다.
기존의 선형 예측법에 의한 음성 분석의 기본적인 가정은 전극점 성도 필터의 입력은 백색 신호라는 것이다. 그러나, 주기성 입력 신호의 경우 피치 바이오스 오차가 기존 선형 예측 계수에 개입된다. 만일 여기 신호의 추정값을 이용할 수 있다면 멀티 펄스에 의한 선형 예측 분석으로 이러한 바이어스를 제거할 수 있다. 기존의 선형 예측 분석에서의 예측 오차는 멀티 펄스 여기 신호열과 불규칙 잡음 신호열의합으로 나타내어질 수 있으므로 선형 예측 오차로부터 멀티 펄스 신호열을 찾아내는 것은 고전적인 검출 및 추정의 문제로 생각될 수 있다. 본 논문에서는 먼저 LRT 를 이용하여 예측오차로부터 멀티 펄스 신호의 위치와 크기를 찾아낸 다음 이 신호열로부터 피치 바이어스가 제거된 선형 예측 계수를 구하는 알고리즘을 제안한다. 매번 적응된 임계값을 적용하여 반복 수행을 함으로써 성능향상을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.