• Title/Summary/Keyword: LPC Coefficient

검색결과 42건 처리시간 0.038초

피치계수를 이용한 화자인식에 관한 연구 (A study on the Speaker Recognition using the Pitch)

  • 김에녹
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권4호
    • /
    • pp.471-480
    • /
    • 2001
  • 본 연구에서는 적응 공명 이론(ART2) 모델을 이용하여 화자인식 실험을 수행하였으며, 모을 검출을 통하여 미리 등록된 단어가 아닌 경우에도 화자를 인식할 수 있도록 특징 파라메터를 개발하였다. 실험을 위해 0에서 9까지의 숫자 음을 남성화자와 여성화자 각각 5명씩 발음하여 사용하였으며, 이들 음성 데이터로부터 모음을 추출한 다음 얻어진 피치 계수, 선형예측 계수, 선형예측 켑스트럼 계수를 신경망의 입력 패턴으로 입력시켜 인식 성능을 측정하였다. 실험 결과 피치를 사용하는 것이 텍스트-의존, 텍스트-독립 화자인식 모두에서 다른 계수들을 사용하는 것보다 우수한 성능을 보이고 있다.

  • PDF

LPC 켑스트럼 계수와 신경회로망을 사용한 화자인식 (Speaker Recognition using LPC cepstrum Coefficients and Neural Network)

  • 최재승
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2521-2526
    • /
    • 2011
  • 본 논문에서는 퍼셉트론 신경회로망과 선형예측부호화 켑스트럼 계수를 사용한 화자인식 알고리즘을 제안한다. 제안하는 화자인식 알고리즘은 입력받은 음성신호에 대해서 유성음 구간을 추출한다. 추출된 유성음 구간에 대하여 선형예측 분석에 의하여 화자의 특성을 가지고 있는 선형예측부호화 켑스트럼 계수를 구한다. 구해진 선형예측부호화 켑스트럼 계수를 분류하기 위하여 이 켑스트럼 계수를 퍼셉트론 신경회로망의 입력으로 사용하여 네트워크의 학습을 수행한다. 본 실험에서는 선형예측부호화 켑스트럼 계수와 신경회로망을 사용하여 본 화자인식 알고리즘이 유효하다는 것을 인식률을 통하여 확인한다.

한국어와 일본어의 음성 인식을 위한 알고리즘 개발에 관한 연구 (A Study on the Algorithm Development for Speech Recognition of Korean and Japanese)

  • 이성화;김병래
    • 전기전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.61-67
    • /
    • 1998
  • 본 연구에서는 다층 순방향 신경망(MFNN) 모델을 이용해서 한국어 및 일본어 숫자음 인식 실험을 수행하였다. 각각 5명의 한국인 남성 및 여성 화자가 0부터 9까지의 10개의 숫자를 7회 발음토록 하였고, 그중 2회 발음한 것을 인식 실험에 사용하였다. 이들 음성 데이터로부터 각각 추출된 피치 계수, 선형 예측 계수, 선형 예측 켑스트럼 계수들을 신경망의 입력 패턴으로 입력시켜 인식 성능을 측정하였다. 한국어를 사용한 실험과 일본어를 사용한 실험 모두에서 피치 계수를 사용하는 것이 다른 계수를 사용하는 것보다 약 4% 정도 우수한 성능을 나타내었다.

  • PDF

음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템 (Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.83-90
    • /
    • 2010
  • 어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.

음소경계검출과 신경망을 이용한 음소인식 연구 (Phoneme-Boundary-Detection and Phoneme Recognition Research using Neural Network)

  • 임유두;강민구;최영호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.224-229
    • /
    • 1999
  • 음성 인식 연구는 유사음소 단위의 인식시스템을 구축하는 방향과 단어 단위의 인식시스템에서의 효율을 최대화하는 방향으로 이루어지고 있다. 이중 유용한 유사음소 단위의 인식시스템 구현을 위해서는 음소의 경계 검출 문제와 검출된 음소에 대한 인식률 향상 문제가 해결되어야 한다. 기존의 LPC(Linear Predictive Coefficient) 방법들은 기준 음소데이터의 LPC와 입력 음성프레임의 LPC 사이의 거리를 Itakura-Saito 방법으로 구하여 음소의 경계를 검출하였으며, 근래에는 MFCC(Mel-Frequency-Cepstrum Coefficient)를 이용하여 스펙트럼의 천이부분을 음소의 경계로 검출하는 방법들이 제안되어왔으나 이러한 방법들은 공통적으로 적응성이 미비하다는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위해 음소경계검출을 위해서는 auto-correlation을 이용하고 음소인식을 위해서는 적응성이 뛰어난 다층 Feed-Forward 신경망을 사용하는 새로운 인식시스템을 제안하였다 제안하는 시스템은 기존의 방법들보다 적응성이 뛰어나고 특징추출부분과 인식 부분의 알고리듬이 독립적이라는 장점을 가지며 프레임단위의 음소인식시스템의 구현 가능성을 확인해 주었다.

  • PDF

예측 VQ-Pyramid VQ를 이용한 광대역 음성용 LSF 양자학기 설계 (A LSF Quantizer for the Wideband Speech Using the Predictive VQ-Pyramid VQ)

  • 이강은;이인성;강상원
    • 한국음향학회지
    • /
    • 제23권4호
    • /
    • pp.333-339
    • /
    • 2004
  • 본 논문에서는 벡터 양자화기와 피라미드 벡터 양자화기를 직렬로 결합하여 16차 벡터 소스에 대한 vector quantizer-pyramid vector quantizer (VQ-PVQ)를 개발하였으며, 예측 구조와 세이프티-넷 (safety-net) 개념을 결합시켜 광대역 음성 부호화기용 LPC 계수 양자화 기를 설계하였다. 본 양자화기의 성능은 AMR-WB(ITRT-T G.722.2)의 LPC양자화기 성능과 비교하였는데, 스펙트럼 왜곡 및 메모리 요구량에서 상당한 이득을 얻었다.

LPC cepstrum 계수를 이용한 근전도 신호의 동작판별 (EMG signal identification using LPC cepstrum coefficients)

  • 정태윤;박상희;김홍래;왕문성;최윤호;변윤식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.738-741
    • /
    • 1988
  • In this paper, we deal with the movements identification of EMG signals by LPC cepstrum coefficients. Movements were identified by extration of characteristics of similar patterns in Euclid distance measurement method for EMG signals generated by voluntary contractions of subject's musculature. As number of coefficients is larger, we obtain the better rate of movements identification. By exact extraction of signals and decision of optimal coefficient, it is expected that these results will apply to prosthesis control in real-time.

  • PDF

Application of RBFN Using LPC of PD Pulse Shapes for Discriminating Among Multi PD Sources

  • Lee, Kang-Won;Lim, Kee-Joe;Kang, Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.177-181
    • /
    • 2003
  • Partial discharge pulse shapes from variable PD (partial discharge) sources sustain many characteristics such as types of PD. Ultra high frequency antennas have wide bandwidth from 30KHz to 2㎓. Therefore, signals taken from a UHF antenna have important attributes (rising time, falling time, shape factor, etc.) for electromagnetic sources, such as PD sources. We investigated PD pulse shapes from several PD sources using a UHF antenna and the results were used for classification of PD sources. Features for discrimination are extracted from frequency distribution and LPC (Linear Prediction Coefficient) of time signal. RBFN are used for investigating the possibility of classification of multi-PD sources.

DMS 모델과 이중 스펙트럼 특징을 이용한 HMM에 의한 음성 인식 (HMM-based Speech Recognition using DMS Model and Double Spectral Feature)

  • 안태옥
    • 한국산학기술학회논문지
    • /
    • 제7권4호
    • /
    • pp.649-655
    • /
    • 2006
  • 본 논문은 화자 독립의 음성인식을 위한 연구로써, DMS 모델에 의한 DMSVQ(Dynamic Multi-Section Vector Quantization) 코드북과 이중 스펙트럼 특징을 이용한 HMM(Hidden Markov Model) 음성인식 방법을 제안한다. 정적 스펙트럼 특징으로서는 LPC ?S스트럼 계수를 이용하였고, 동적 스펙트럼 특징으로는 LPC ?S스트럼의 회귀계수를 사용하였다. 이들 두개의 스펙트럼 특징들을 각각 VQ 코드북으로 양자화되고, DMS 모델을 이용한 HMM은 입력으로써 정적 스펙트럼 특징과 동적 스펙트럼 특징을 받아드림으로써 모델링된다. 제안된 방법에 의한 인식 실험은 기존의 다양한 인식 방법에 의한 인식 실험들과 비교를 위해 동일한 데이터와 조건 하에서 수행하였다. 실험 결과, 본 연구에서 제안한 방법이 기존의 방법들보다 우수한 방법임을 입증하였다.

  • PDF

DHMM을 이용한 한국어 음성 인식 (Korean Speech Recognition using DHMM)

  • 안태옥;이강성;유형근;이형준;조형제;변용규;김순협
    • 한국음향학회지
    • /
    • 제10권1호
    • /
    • pp.52-60
    • /
    • 1991
  • 본 연구는 스펙트럼의 동적 특징을 한 파라메타로 하는 DHMM(Dynamic Hidden Markov Model)을 이용한 단독어인식에 관한 것으로 정적 스펙트럼 특징뿐 아니라 동적 스펙트럼 특징을 평가할 수 있는 DHMM에 근거한 음성 인식 실험을 논의 한다. 정적특징으로는 LPC cepstrum 계수를 이용하였고, 동적특징으로는 LPC cepstrum 의 회귀계수를 사용하였다. 이들 두 개의 특징 벡터들을 각각 집단화하여 만든 두 VQ codebook과 입력으로 받아들인 정적 벡터및 동적벡터로 단어들을 DHMM(Dynamic Hidden Markov Model)으로 모델링 하였다. 전체적인 실험에서 기존의 HMM을 이용한 인식실험에서는 88.8%의 인식율을 얻었는데 반해, DHMM을 이용한 인식실험에서는 92.7%의 인식율을 보였다.

  • PDF