• Title/Summary/Keyword: LNG저장 탱크

Search Result 217, Processing Time 0.024 seconds

A Study on the Structual Integrity of Stress Concentration Region Caused by Welding Discontinuity for Construction of 9 % Ni Steel of LNG Storage Tank Internal (9% Ni강 LNG 저장탱크 내조의 시공에 따른 용접부의 불연속으로 인한 응력 집중부 구조 건전성에 대한 연구)

  • Lee, Young-Min;Lee, Young-Shin;Lee, Sung-Jin;Kim, Young-Kyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.579-582
    • /
    • 2011
  • 본 논문에서는 9 % Ni강 LNG 저장탱크 조사를 통해서 유한요소해석을 수행하여 구조건전성을 평가하였으며 실용에서 활용할 수 있는 자료를 제시하였다. 과거의 LNG 저장탱크의 설계는 2차원 선에서만 유한요소해석이 수행되었으나 보다 진보된 하드웨어와 소프트웨어의 발전으로 3차원 유한요소해석이 가능케 되었다. 본 연구에서는 9 % Ni 강 LNG 저장탱크 내조의 정적 구조 해석이 상용 유한 요소 해석 프로그램인 ABAQUS를 통해 수행되었다. LNG 저장 탱크 내조 시공 시 용접부 형상을 참고하여 용접부 모델을 고려한 해석을 각각 수행하였다. 용접부의 탄성계수의 변화를 통하여 최대응력과 최대변위를 계산하였다. 실제 LNG tank의 운용 시 발생하는 하중은 자중과, 수두 압과, 온도차에 의한 열응력이며 이들이 복합적으로 작용하였을 시, 용접선을 고려하지 않은 모델에 대해서는 최대응력이 207 MPa이며, 동일 조건에서 용접선을 포함한 모델에 대해 해석을 수행한 결과로서 최대응력이 그보다 약 100 MPa 정도 상승한 결과가 나타났다. 하중조건에서 온도차에 의한 열응력을 고려함과 고려하지 않음을 비교함으로서 실제 열응력에 대해서는 내조에 큰 영향을 미치지 않음을 확인하였다.

  • PDF

Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges (270,000 kL급 LNG 저장 탱크 외조의 폭발량에 따른 손상도 해석적 평가)

  • Kim, Jang-Ho Jay;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.685-693
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridionally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.

Latest welding technology for storage and transportation facilities of liquified natural gas (LNG저장과 수송설비의 최신용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.17-27
    • /
    • 2016
  • The need for storage and transportation facilities of liquefied natural gas have increased significantly because of global environmental regulations and recent shale gas innovation in North America. There is severe competition between Korea, Japan, and China for receiving manufacturing orders of LNG carriers or LNG storage tanks. Rationalization of the welding process used in the manufacturing of LNG facilities plays an important role in the above competition. This review paper presents the current global status and tendency for the development of latest welding technologies for LNG storage and transportation facilities. This article intends to present materials for raising the domestic competitive power for receiving manufacturing orders of LNG facilities.

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

Thermal analysis of LNG storage tank for LNG bunkering system (LNG 벙커링용 고효율 LNG 저장탱크 열해석)

  • Yun, Sang-kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.876-880
    • /
    • 2015
  • In 2016, the IMO's new rules for an 80% reduction in NOx emissions in newly built ships will necessitate the use of LNG as a clean fuel. So far, the developed European countries have led the development of LNG bunkering ships and related facilities. An LNG bunkering system stores LNG in a horizontal or vertical IMO "C"-Type tank insulated with perlite powder, and a vacuum in the annular space between the double walls, like the cryogenic liquid nitrogen tank. Current storage tanks have high heat leakage, evaporating over 2.0% daily, and are difficult to build with the required vacuum. A more efficiently insulated storage tank could reduce the evaporation rate. This research carried out thermal analysis on a new effective insulation method that separates high vacuum in the annular space between two tanks with a solid insulation material, such as urethane foam, lining the outer vessel. This highly efficient insulation system obtained an evaporation rate of 0.03% per day under a $10^{-3}torr$ vacuum, and an evaporation rate of 0.11% at $10^{-45}torr$. Even if the space loses its vacuum, the new insulation system showed a lower evaporation rate of 4.12% than the present perlite system of 4.9%. This newly developed tank can increase the efficiency of LNG storage tank and may help keep LNG bunkering systems safe.

A Study on the Inner tank Seismic Analysis Model for Calculation of Seismic Forces of LNG Storage Tank (LNG저장탱크 지진력 산정을 위한 내부탱크 지진해석 모델에 관한 연구)

  • Kim, Miseung;Lee, Kangwon;Kim, Junhwi;Yoon, Ihnsoo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2013
  • LNG(Liquefied Natural Gas) has been considered as the green energy. Thus, the demand of natural gas is keep increasing around the world, and various studies are actively under progress about the LNG storage tank. To calculate the seismic forces of actual LNG storage tank, FEM model has to include inner tank, outer tank, pile and soil to implement the interaction between structure and ground. So, this paper is represent the study about inner tank model of three cases using Malhotra method in EN 1998-4(European Standard). The results of calculation were compared, and the most suitable to inner tank model was suggested.

A Development of Representative Condition Evaluation Standard for LNG Storage Tank Structures (LNG 저장탱크 구조물의 종합적 상태평가기준 개발)

  • Kim, Jung-Hoon;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.44-51
    • /
    • 2018
  • As the LNG storage tank is aged, if there is a crack in the outer wall concrete or corrosion of the reinforcing steel, there is a risk of a major accident such as collapse of the structure depending on the type and degree of damage. Since 2014, LNG storage tanks have undergone precise safety diagnosis and safety inspection has been carried out. The condition evaluation criteria for each component have been revised and applied in January 2016. The condition evaluation standard is to evaluate the status of storage tanks based on the appearance survey and material test results of LNG storage tanks and it is important for maintenance. In addition, the representative condition evaluation standard that shows the comprehensive state of each LNG storage tank is important in maintenance, but the related standard for LNG storage tank outer concrete is not available in Korea and abroad, and development of the condition evaluation standard is necessary. In this paper, we examined the structural characteristics of LNG storage tanks, analyzed the status of the condition evaluation criteria for each member, and developed a comprehensive status rating system by weighting the members. We used the AHP(Analytic Hierarchy Process) technique and developed a representative conditon evaluation criteria through surveys of professional organizations.

A Study on Integrated Control and Safety Management Systems for LNG Membrane Storage Tank (멤브레인식 LNG 저장탱크용 통합제어안전관리시스템에 대한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, the integrated control and safety management system for a super-large LNG membrane storage tank has been presented based on the investigation and analysis of measuring equipments and safety analysis system for a conventional LNG membrane storage tank. The integrated control and safety management system, which may increase a safety and efficiency of a super-large LNG membrane storage tank, added additional pressure gauges and new displacement/force sensors at the steel anchor between an inner tank and a prestressed concrete structure. The displacement and force sensors may provide clues of a membrane panel failure and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on the membrane panel fracture even though LNG is leaked until the leak detector, which is placed at the insulation area behind an inner tank, send a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from measurement systems such as displacement and force of a membrane panel safety, LNG level and density, cool-down process, leakage, and pressure controls.

Experimental Analysis of Corbel Part Behaviour in Inground LNG Storage Tank (지하식 저장탱크 Corbel부 실험적 거동 분석)

  • Yoon I.S.;Kim J.K.;Kim Y.K.;Kim J.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.56-60
    • /
    • 2006
  • The connection part (corbel) between bottom slab and side wall in inground LNG storage tank has hinge conditions partly fixed by using anchor bars to reduce stress concentration. The corbel deforms in both radial and vertical directions under load conditions of the LNG tank such as LNG temperature, hydraulic pressure, etc. Membrane is an important part from the viewpoint of design because the deformation of the corbel is transformed directly to the membrane and superposed with other deformations. Behavior of the corbel has been investigated through various sensors to measure temperature, load and displacement. And the test data have been compared with finite element results analysis to propose a more reasonable design of LNG storage tank.

  • PDF

Trend and Subject in Welding Technique of LNG Aboceground Storage Tank (지상식 LNG 탱크의 용접기술 현황과 향후 동향)

  • Kouzuki, Haruya;Ogawa, Tsuneshi
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.18-33
    • /
    • 1995
  • 천연가스는 지구상에서 비교적 광범위하게 생산되며 구미 등에서는 대부분 pipe line으로 소비지까지 운송하여 사용하고 있지만 일본 등에서는 액화 천연가스 (LNG)로 저장, 수송하여 사용하고 있다. LNG 저장탱크는 생산측의 액화기지와 사용측 의 수입기지에 설치되며 지금까지 약 240기가 건설되어 있다. 종래 탱크 1기의 용량 은 대부분 6 - 8만m$^{3}$ 규모였지만, 토지의 유효이용 등으로 대형화되고 있으며, 또 지상식에서는 PC(Prestressed Concrete)의 방파제를 외부탱크에 근접시켜 외부탱크 와 일체화시킨 PC LNG 탱크가 개발.설계되었다. 일본에서는 이미 이 방식으로 세계 최대규모인 14만m$^{3}$ 탱크가 건조되어 가동 중이다. LNG의 주성분은 메탄이고 비등점은 -161.5.deg.C로 극저온이다. 이러한 저온에서도 취화되지 않고 사용할 수 있는 재료는 9%Ni강, Al 합금, 스테인레스강 및 Invar 등이 있지만, 탱크의 대형화에 따라 가공성, 용접성 및 경제성을 고려하여 요즈음은 9%Ni강이 주로 사용되고 있다. 한편 9%Ni강용 용접재료는 고Ni계 합금 및 모재와 동일한 성분계의 공금계가 있지만 지금까지 고 Ni계 합급이 주로 사용되고 있다. 본 내용에서는 9%Ni강을 사용한 지상식 평지원통형 LNG 탱크를 예로 들어 탱크의 개요 및 용접재료, 용접시공 등을 포함한 용접기술에 대해서 개괄적으로 설명하고자 한다.

  • PDF