• 제목/요약/키워드: LMIS

Search Result 245, Processing Time 0.021 seconds

Design of a Low-Order H Controller Using an Iterative LMI Method (반복 선형행렬부등식을 이용한 저차원 H 제어기 설계)

  • Kim Chun-Kyung;Kim Kook-Hun;Moon Young-Hyun;Kim Seog-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.

An LMI-based Decentralized Sliding Mode Control Design Method for Large Scale Systems (대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.651-655
    • /
    • 2005
  • In this paper, we consider the problem of designing decentralized sliding mode control laws far a class of large scale systems with mismatched uncertainties. We derive a sufficient condition far the existence of a linear switching surface in terms of a linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given LMI existence conditions. We also give an algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

Intelligent Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 지능형 디지털 분산 제어 시스템 개발)

  • Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the intelligent digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for Heating, ventilating, and ai. conditioning (HVAC) system are provided.

Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers (크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정)

  • 최한호;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.616-622
    • /
    • 2003
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

Observer-Based Mixed $H_2/H_{\infty}$ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach

  • Karimi, Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • This paper presents a convex optimization method for observer-based mixed $H_2/H_{\infty}$ control design of linear systems with time-varying state, input and output delays. Delay-dependent sufficient conditions for the design of a desired observer-based control are given in terms of linear matrix inequalities (LMIs). An observer-based controller which guarantees asymptotic stability and a mixed $H_2/H_{\infty}$ performance for the closed-loop system of the linear system with time-varying delays is then developed. A Lyapunov-Krasovskii method underlies the observer-based mixed $H_2/H_{\infty}$ control design. A numerical example with simulation results illustrates the effectiveness of the methodology.

The Ohmic Contact of n-GaAs Using by Liquid Metal Ion Source (액체금속이온원을 이용한 n형 GaAs의 오옴성 접촉)

  • 강태원;이정주;김송강;홍치유;임재영;강승언
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.1995-2000
    • /
    • 1989
  • The ion beam system of 20keV C-W (Cockroft Walton) type composed of the AuGe alloy LMIS(Liquid Metal Ion Source) has been designed and constructed. For the fabrication of the ohmic contact to the n-GaAs, the ion beam extracted from the AuGe alloy source was implanted into the n-GaAs, and it was measured by contact resistivity. The stable AuGe ion beam(2.5\ulcorner/cm\ulcorner was obtained at the extraction voltage of 14.5kV. The measurements of the contact resistivity were done by the TLM (Transmission Line Model) method and the specific contact resistivity was found to be 2.4x10**-5 \ulcornercm\ulcornerfor the implanted sample by the 1.9x10**20/cm**3 and the annealed sample at 30\ulcorner for 2 min.

  • PDF

An LMI-Based Sliding Surface Design Method for Linear Systems with Mismatched Uncertainties (비정합 불확실성을 갖는 선형 시스템을 위한 LMI 기반 슬라이딩 평면 설계법)

  • Choi, Han-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.409-413
    • /
    • 2006
  • In this paper, we propose a new sliding surface design method for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. And, we give an LMI parameterization of such linear sliding surfaces together with switched feedback control laws. Our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.

Design of Switching-Type Controller for Discrete-Time Ts Fuzzy Systems (이산시간 TS 퍼지 시스템의 스위칭모드 제어기의 설계)

  • Kim, Joo-Won;Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2005-2007
    • /
    • 2001
  • A controller design problem for a discrete-time Takagi-Sugeno (TS) fuzzy systems is discussed. The switching-type controller is employed in this study. A switching-type fuzzy-model-based controller is constructed based on the spirit of "devide and conquer". The design condition of this controller is formulated in terms of linear matrix inequalities (LMIs), which guarantees the global stability of the controlled TS fuzzy systems. An example is included for ensuring the effecienct of the proposed control method.

  • PDF

A New Augmented Lyapunov Functional Approach to Robust Stability Criteria for Uncertain Fuzzy Neural Networks with Time-varying Delays (시변 지연이 존재하는 불확실 퍼지 뉴럴 네트워크의 강인 안정성 판별법에 대한 새로운 리아프노프 함수법)

  • Kwon, Oh-Min;Park, Myeong-Jin;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2119-2130
    • /
    • 2011
  • This paper proposes new delay-dependent robust stability criteria for neural networks with time-varying delays. By construction of a suitable Lyapunov-Krasovskii's (L-K) functional and use of Finsler's lemma, new stability criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.

Delay-dependent Robust Passivity for Uncertain Neural Networks with Time-varying Delays (시변 지연을 가진 불확실 뉴럴 네트워크에 대한 지연의존 강인 수동성)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon;Cha, En-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2103-2108
    • /
    • 2011
  • In this paper, the problem of passivity analysis for neural networks with time-varying delays and norm-bounded parameter uncertainties is considered. By constructing a new augmented Lyapunov functional, a new delay-dependent passivity criterion for the network is established in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical example are included to show the effectiveness of proposed criterion.