• Title/Summary/Keyword: LMI-based H^{\infty} control

Search Result 75, Processing Time 0.03 seconds

Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control (LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어)

  • 양승윤;김인수;이만형
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

LMI-based $H_\infty$ Robust Control of Asymmetric Rotor-magnetic Bearing System (비대칭 로터-자기베어링 시스템의 LMI에 기초한 $H_\infty$ 강건제어)

  • 강호식;송오섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.172-179
    • /
    • 2003
  • Linear matrix Inequality based $H_\infty$ robust controller is designed to control the motion of a 4-axis unbalanced rigid asymmetric rotor supported and controlled by two active magnetic bearings in this paper. To this end, the equations of motion of the system are derived via Hamilton's variational principle and transformed to a state-space form for the standard $H_\infty$ control problem. LMI-based controller, which does not require additional assumptions beyond the usual stabilizability and detectability assumptions, is designed based upon the pole place weighting function and loopshaping technique. The obtained results are compared with those reported in the available literature and the efficiency of the proposed LMI-based $H_\infty$ control is revealed.

Design of an LMI- Based H^{\infty} Servo Controller for Tandem Cold Mill (LMI 에 기초한 연속 냉간압연기의 H^{\infty} 서보 제어기 설계)

  • Kim, In-Soo;Hwang, I-Cheol;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2000
  • In this paper, we design a H^\infty servo controller for gauge control of tandem cold mill. To improve the performance of the AGC(Aotomatic Gauge Control) system based on the Taylor linearized model of tandem cold mill, the H^\infty servo controller is designed to satisfy robust stability, disturbance attenuation and robust tracking properties. The H^\infty servo controller problem is modified as an usual H^\infty control problem, and the solvability condition of the H^\infty servo problem depends on the solvability of the modified H^\infty control problem. Since this modified problem does not satisfied standard assumptions for the H^\infty control problem, it is solved by an LMI(Linear Matrix Inequality) technique. Consequently, the comparison between the H^\infty servo controller and the existing PID/FF(FeedForward) controller shows the usefulness of this study.

  • PDF

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.

Robust observer-based $H_{\infty}$ control for singular systems (특이시스템의 강인 관측기 기반 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.7-9
    • /
    • 2004
  • This paper provides an observer-based $H_{\infty}$ controller design method for singular systems with and without time-varying delay by just one LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI (linear matrix inequality) approach. The design procedure involves solving an LMI. The observer-based $H_{\infty}$ controller in the existing results can be constructed from the coupled two or more conditions while the proposed controller design method can be obtained from an LMI condition, which can be solved efficiently by convex optimization. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables. An example is given to illustrate the results.

  • PDF

The $H_2/ H_\infty$ control of inverted pendulum system using linear fractional representation (도립진자 시스템에 선형 분수 표현법을 이용한 $H_2/ H_\infty$ 제어)

  • 곽칠성;최규열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.875-885
    • /
    • 1999
  • This paper presents an application of LMI-based techniques to the mixed $H_2/ H_\infty$ control of an inverted pendulum. The linear model of the inverted pendulum represented by an LFR(Linear Fractional Representation) model of uncertainties is derived. Considered uncertainties are three nonlinear components and a parameter uncertainty Augmenting the LFR model by adding weighting functions, we get a generalized plant, for which we design a mixed $H_2/ H_\infty$ controller using the LMI technique. To evaluate control performances and robust stability of the mixed $H_2/ H_\infty$ controller designed, we compare it with the $ H_\infty$controller through the simulation and experiment. The mixed $H_2/ H_\infty$ controller shows the better control performances and robust stability than the $H_\infty$controller in the sense of pendulum angle.

  • PDF

Model-free $H_{\infty}$ Control of Linear Discrete-time Systems using Q-learning and LMI Based on I/O Data (입출력 데이터 기반 Q-학습과 LMI를 이용한 선형 이산 시간 시스템의 모델-프리 $H_{\infty}$ 제어기 설계)

  • Kim, Jin-Hoon;Lewis, F.L.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1411-1417
    • /
    • 2009
  • In this paper, we consider the design of $H_{\infty}$ control of linear discrete-time systems having no mathematical model. The basic approach is to use Q-learning which is a reinforcement learning method based on actor-critic structure. The model-free control design is to use not the mathematical model of the system but the informations on states and inputs. As a result, the derived iterative algorithm is expressed as linear matrix inequalities(LMI) of measured data from system states and inputs. It is shown that, for a sufficiently rich enough disturbance, this algorithm converges to the standard $H_{\infty}$ control solution obtained using the exact system model. A simple numerical example is given to show the usefulness of our result on practical application.

$H_{\infty}$ Control of Magnetic Bearing-Rotor System : LMI- based approaches (자기베어링-로터시스템의 LMI 접근법에 의한 $H_{\infty}$ 제어기 설계)

  • 박충남;송오섭;강호식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.948-953
    • /
    • 2001
  • Nonlinear dynamic equation of a 4-axis rigid rotor supported by two an-isotropic magnetic bearings is derived via Hamilton's principle. It is transformed to a state-space form for the standard Η$_{\infty}$ control problem. we present a robust Η$_{\infty}$ control design methods of continuous and discrete LMI-based approaches and improve performance using loopshaping.

  • PDF

Robust $H{\infty}$ Control Using Sliding Mode and LMI (슬라이딩모드와 LMI를 이용한 강인 $H{\infty}$ 제어)

  • Kim, Su-Jin;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Kyun;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.316-321
    • /
    • 2007
  • [ $H{\infty}$ ] controller, which shows robustness for disturbances and noises, can not be used in the case of uncertain system parameters. Even if the $H{\infty}$ controller can be designed for the parameter uncertain system, its performance can be deteriorated. Therefore, in this paper, the robustness of $H{\infty}$ controller is improved by using the SMC(Sliding Mode Control). The LMI based $H{\infty}$ controller is designed first and then SMC controller is added.

Observer-Based Mixed $H_2/H_{\infty}$ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach

  • Karimi, Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • This paper presents a convex optimization method for observer-based mixed $H_2/H_{\infty}$ control design of linear systems with time-varying state, input and output delays. Delay-dependent sufficient conditions for the design of a desired observer-based control are given in terms of linear matrix inequalities (LMIs). An observer-based controller which guarantees asymptotic stability and a mixed $H_2/H_{\infty}$ performance for the closed-loop system of the linear system with time-varying delays is then developed. A Lyapunov-Krasovskii method underlies the observer-based mixed $H_2/H_{\infty}$ control design. A numerical example with simulation results illustrates the effectiveness of the methodology.