• Title/Summary/Keyword: LLC DC-DC transformer

검색결과 29건 처리시간 0.023초

넓은 충전 범위를 갖는 전기 자동차용 급속 충전기의 고효율 운전을 위한 손실 분석 (Power Loss Analysis of EV Fast Charger with Wide Charging Voltage Range for High Efficiency Operation)

  • 김대중;박진혁;이교범
    • 전기학회논문지
    • /
    • 제63권8호
    • /
    • pp.1055-1063
    • /
    • 2014
  • Power losses of a 1-stage DC-DC converter and 2-stage DC-DC converter are compared in this paper. A phase-shift full-bridge DC-DC converter is considered as 1-stage topology. This topology has disadvantages in the stress of rectifier diodes because of the resonance between the leakage inductor of the transformer and the junction capacitor of the rectifier diode. 2-stage topology is composed of an LLC resonant full-bridge DC-DC converter and buck converter. The LLC resonant full-bridge DC-DC converter does not need an RC snubber circuit of the rectifier diode. However, there is the drawback that the switching loss of the buck converter is large due to the hard switching operation. To reduce the switching loss of the buck converter, SiC MOSFET is used. This paper analyzes and compares power losses of two topologies considering temperature condition. The validity of the power loss analysis and calculation is verified by a PSIM simulation model.

낮은 입력전압, 대전류 응용을 위한 2단 구성 승압컨버터 (Two Stage High Step-Up Converter for Low Input Voltage and High Current Applications)

  • 노영재;서함;강철하;김은수;장상호
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.507-515
    • /
    • 2012
  • DC-DC converter which composed of LLC resonant converter, operated by fixed switching frequency with fixed duty cycle (50%), and flyback converter to provide constant output voltage($400V_{DC}$) with variation of input voltage($30-60V_{DC}$) is proposed in this paper. To obtain constant output voltage($400V_{DC}$), flyback converter is not operated in case of above the maximum input voltage($60V_{DC}$) and operated as the input voltage decreases to below 60VDC. Therefore, flyback converter can be designed to the 50% power rating of the maximum power in the proposed DC-DC converter. Operation modes and voltage gain characteristics were analyzed and a 360W prototype converter was tested to verify the proposed converter.

고효율 및 소형 스위치모드 라인 트랜스포머 (High Efficiency and Small Size Switch Mode Line Transformer(SMLT))

  • 김진홍;양정우;장두희;강정일;한상규
    • 전력전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.237-243
    • /
    • 2019
  • A high-efficiency and small-sized switched-mode line transformer (SMLT) is proposed in this study. The conventional structure of an adapter is composed of line transformer and rectifiers. This structure has a limit in miniaturizing due to low-frequency line transformer. Another structure is composed of power factor correction (PFC) and DC/DC converter. This structure has a limit in reducing volume due to two-stage structure. As the proposed SMLT is composed of an LLC resonant converter, a high-frequency transformer can be adopted to achieve isolation standards and size reduction. This proposed structure has different operation modes in accordance with line input voltage to overcome poor line regulation. In addition, the proposed SMLT is applied to the front of a conventional PFC converter, because the SMLT output voltage is restored to rectified sinusoidal wave by using a full-bridge rectifier in the secondary side. The design of the PFC converter is easy, because the SMLT output voltage is controlled as rectified sinusoidal wave. The validity of the proposed converter is proven through a 350 W prototype.

Current equalization method of the rectifier diodes in LLC resonant converter Using the auxiliary winding of the transformer

  • 현병철;김지태;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.143-145
    • /
    • 2009
  • The method for the current equalization of the rectifier diodes in LLC resonant converter is proposed. The method decreases the current difference between the rectifier diodes using the auxiliary winding of the transformer and asymmetrical pulse width modulation (APWM). The analytical reason of the current unbalance is investigated and the operation principle of the proposed method and APWM control loop are explained. The performance of the proposed method was verified on a 480-W, 400-V/24-V dc/dc converter.

  • PDF

부하평형 듀얼 모듈로 구성된 고효율 스위치 모드 라인 트랜스포머(SMLT) (High Efficiency Switch Mode Line Transformer (SMLT) Composed of Load Sharing Dual Modules)

  • 김진홍;양정우;장두희;강정일;한상규
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.188-194
    • /
    • 2020
  • This paper presents a high-efficiency Switch Mode Line Transformer (SMLT) composed of load-shared dual modules, which is based on the AC/AC LLC resonant converter. Given that the conventional adaptor is usually composed of two power stages, namely, the PFC and DC/DC converters, its system size can be increased according to the output power. However, given that the proposed SMLT can separate the PFC converter from the adaptor, the size reduction of the system can be achieved. Meanwhile, the SMLT with a single module has the limit of the size reduction because of a high resonant current. Thus, it can be configured with dual or multiple modules to reduce the resonant current. Then, their load sharing can be guaranteed by only the proposed transformer structure without an extra current controller. The validity of the proposed converter is proven through a 850-W prototype.

단일 변압기를 이용한 고효율.저가격형 다중출력 LLC 공진형 컨버터 (High-Efficiency & Cost-Effective Multi-Output LLC Resonant Converter using Single Transformer)

  • 조상호;윤종규;노정욱;홍성수;김종해;이효범;한상규
    • 전력전자학회논문지
    • /
    • 제13권6호
    • /
    • pp.439-446
    • /
    • 2008
  • 다양한 기능을 동시에 구현하는 최근의 전자제품을 위한 전력 시스템은 다양한 종류의 전원을 구비해야 하며, 고효율 저가격 특성이 필수적이다. 이를 위해 본 논문은 단일 변압기를 이용한 중용량급의 고효율 저가격형 다중출력 LLC 공진형 컨버터를 제안한다. 제안된 컨버터는 단일 변압기를 이용하고, 요구되는 출력 당 고가의 DC/DC 컨버터의 추가 없이 1 개의 보조 스위치만으로 구현되므로 구조가 간단하고 저가격화 및 효율 개선에 유리하다. 또한 제안된 회로의 모든 전력 스위치들은 ZVS 또는 ZCS가 가능하므로 EMI 특성이 우수하며 스위칭 손실을 최소화 할 수 있다. 최종적으로 제안된 컨버터 및 전원시스템의 우수성과 이론적 분석의 타당성 검증을 위해 42" FHD급 PDP용 전원회로를 위한 시작품을 제작하여 고찰된 실험결과를 제시한다.

Coupled Inductor를 활용한 배전류 정류 회로를 적용한 LLC 직렬 공진 컨버터의 수식화 해석 (Mathematical Analysis of LLC Series Resonant Converter with Current Doubler Rectifier using Coupled Inductor)

  • 신정윤;황순상;윤병철;김학원;조관열
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.440-449
    • /
    • 2014
  • This study proposes an LLC series resonant converter with a current doubler using a coupled inductor as a rectification circuit for the secondary side. The current doubler circuit is generally used for a high-voltage input and low-voltage output circuit to obtain high efficiency with small transformer turn ratio. However, an inductive circuit is not generally used in the secondary side of an LLC series resonant converter. If inductive components exist on the secondary side, the resonant characteristics are changed through the secondary inductive circuit. Mathematical analysis shows that the secondary-side current doubler with coupled inductor is not affected by the resonant characteristic of the primary LLC if leakage inductance occurs in the coupled inductor. Results of the analysis are proven by simulation; an experiment is also conducted for the proposed circuit.

노트북 컴퓨터용 LLC 하프 브리지 공진형 어댑터 설계 (Design of the LLC Half Bridge Resonant Adapter for Notebook Computers)

  • 황국화;윤대영;김창선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1039-1040
    • /
    • 2006
  • The resonant converters cause the high voltage stress according to the input voltage, which increases the conduction loss in converter power switches. The topology of LLC half bridge resonant converter provides ZVS characteristic and also the stress of voltage and current is not higher than that of the general resonant converters. So we can expect the higher efficiency. In this paper, the LLC resonant converter is designed for the notebook computer adapter. In the adapter design, we should consider the weight, the size and overheat of the adapter. Thus the higher efficiency is an essential particular. First of all, the optimal design of transformer is the most important facts. Some parameters should be considered in order to get the highest efficiency. The adapter is designed through the considering of these parameters including the PFC circuit of the pre-regulator. It converts AC line input into about $400V_{DC}$ Link voltage of the LLC converter input and the converter has $16V_{DC}/90W$ ratings. The efficiency measured is about up to 92%.

  • PDF

A Contactless Power Supply for a DC Power Service

  • Kim, Eun-Soo;Kim, Yoon-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.483-491
    • /
    • 2012
  • It is expected that, in the future, DC power service will be widely used for photovoltaic home power generation systems, since DC consuming devices are ever increasing. Instead of using multiple converters to convert DC to AC and then AC to DC, the power service could solely be based on DC. This would eliminate the need for converters, reducing the cost, complexity, and possibly increasing the efficiency. However, configuration of direct DC power service with mechanical contacts can cause spark voltage or an electric shock when the switch is turned on and off. To solve these problems, in this paper, a contactless power supply for a DC power service that can transfer electric power produced by photovoltaics to the home electric system using magnetic coupling instead of mechanical contacts has been proposed. The proposed system consists of a ZVS boost converter, a half-bridge LLC resonant converter, and a contactless transformer. This proposed contactless system eliminates the use of DC switches. To reduce the stress and loss of the boost converter switching devices, a lossless snubber with coupled inductor is applied. In this paper, a switching frequency control technique using the contactless voltage sensing circuit is also proposed and implemented for the output voltage control instead of using additional power regulators. Finally, a prototype consisted of 150W boost converter has been designed and built to demonstrate the feasibility of the proposed contactless photovoltaic DC power service. Experimental results show that 74~83% overall system efficiency is obtained for the 10W~80W load.