• Title/Summary/Keyword: LH receptor

Search Result 68, Processing Time 0.108 seconds

Galectin-1 from redlip mullet Liza haematocheilia: identification, immune responses, and functional characterization as pattern recognition receptors (PRRs) in host immune defense system

  • Chaehyeon Lim;Hyukjae Kwon;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.11
    • /
    • pp.559-571
    • /
    • 2022
  • Galectins, a family of ß-galactoside-binding lectins, have emerged as soluble mediators in infected cells and pattern recognition receptors (PRRs) responsible for evoking and regulating innate immunity. The present study aimed to evaluate the role of galectin-1 in the host immune response of redlip mullet (Liza haematocheilia). We established a cDNA database for redlip mullet, and the cDNA sequence of galectin-1 (LhGal-1) was characterized. In silico analysis was performed, and the spatial and temporal expression patterns in gills and blood in response to lipopolysaccharide polyinosinic:polycytidylic acid, and Lactococcus garvieae were estimated via quantitative real-time PCR. Functional assays were conducted using recombinant protein to investigate carbohydrate binding, bacterial binding, and bacterial agglutination activity. LhGal-1 was composed of 135 amino acids. Conserved motifs (H-NPR, -N- and -W-E-R) within the carbohydrate recognition domain were found in LhGal-1. The tissue distribution revealed that the healthy stomach expressed high levels of LhGal-1. The temporal monitoring of LhGal-1 mRNA expression in the gill and blood showed its significant upregulation in response to immune challenges with different stimulants. rLhGal-1 exhibited binding activity in response to carbohydrates and bacteria. Moreover, the agglutination of rLhGal-1 against Escherichia coli was observed. Collectively, our findings suggest that LhGal-1 may function as a PRR in redlip mullet. Furthermore, LhGal-1 can be considered a significant gene to play a protective role in redlip mullet immune system.

An Antisense Oligodeoxynucleotide to the LH Receptor Attenuates FSH-induced Oocyte Maturation in Mice

  • Yang, Jiange;Fu, Maoyong;Wang, Songbo;Chen, Xiufen;Ning, Gang;Xu, Baoshan;Ma, Yuzhen;Zhang, Meijia;Xia, Guoliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.972-979
    • /
    • 2008
  • It has been recently shown that expression of the LH receptor (LHR) in cumulus cells is related with FSH-induced meiotic resumption of mouse cumulus enclosed oocytes (CEOs). However, to date, it is still unclear whether LHR expression in cumulus cells plays a key role during FSH-induced oocyte maturation. The purpose of this study was to characterize the functional role of LHRs in cumulus cells. CEOs were isolated from eCG-primed preovulatory follicles and cultured in hypoxanthine (HX) arrested medium. LHR protein expression in cumulus cells was time-dependent increasing during the process of FSH-induced oocyte maturation. While the sense oligodeoxynucleotide (ODN) had no effect, antisense ODN inhibited FSH-induced LHR expression and meiotic resumption. Moreover, this antisense ODN against LHR could inhibit FSH-induced mitogen-activated protein kinase (MAPK) phosphorylation. This study suggested that LHR expression in cumulus cells is involved in FSH-induced oocyte meiotic resumption, which process is possibly regulated by MAPK cascade.

Reproductive Aging in Female Rodents (암컷 설치류에서의 생식 노화)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • In all female mammals, reproductive system is one of the first biological systems to show age-related decline. Female mammals in reproductive aging, though the phenomena is somewhat species-specific, start to show declining fertility and changes of numerous physiological functions. This review will present a current information on the aging of the female reproductive hormonal axis and introduce three useful rodent models for studying this field. Middle age($8{\sim}12$ months old) in female rats and mice is comparable to the stage prior to the entry of menopause in human. In this period pulsatile and surge GnRH secretion from hypothalamus gradually attenuated, then reduced pulsatile and surge LH secretion is followed consequently. This age-related defects in GnRH-LH neuroendocrine axis seem to be highly correlated with the defects in brain signals which modulate the activities of GnRH neuron. Many researchers support the idea which the age-related hypothalamic defects are the main cause of reproductive aging, but some ovarian factors such as inhibin response also could contribute to the induction of reproductive senescence. Some rodent models are quite valuable in studying the reproductive aging. The follitropin receptor knockout(FORKO) mice, both of null and haploinsufficient state, could produce depletion of oocyte/follicle with age. Dioxin/aryl hydrocarbon receptor(AhR) knockout mice also show severe ovarian defects and poor reproductive success early in their life compared to the age-matched normal mice. Further studies on the reproductive aging will be a great help to evaluate the benefits and risks of hormone replacement therapy(HRT) and to improve the safety of HRT.

  • PDF

Physiological Regulation of Luteinizing Hormone(LH) Expression in Rat Mammary Gland during Differentiation (분화중인 흰쥐 유선내 Luteinizing Hormone (LH) 유전자 발현의 생리적인 조절)

  • 이성호
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.175-180
    • /
    • 2001
  • The ectopic expression of gonadotropin releasing hormone(GnRH and luteinizing hormone(LH) in several tissues is a quite intriguing phenomenon. Recently, the presence of GnRH and its receptor has been clearly demonstrated in rodents and human mammary gland. In this context, one can postulate that the presence of local circuit composed of GnRH and LH in the gland. The present study was undertaken to elucidate whether there is a correlation between the LH expression in rat mammary gland and physiological status during the process of mammary differentiation. LH contents in mammary gland from cycling to weaning rats were measured by radioimmunoassay(RIA). In cycling rats, changes of the LH level in both serum and mammary gland showed similar pattern as the highest level in proestrus and the lowest level in diestrus II stage. While the serum LH levels were fluctuated from pregnant through involution stage, a sharp decline of mammary LH contents was observed in the lactating rats. This decrement was recovered in involuting rats to the level of proestrus stage. Reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot analyses demonstrated that the transcriptional activities of the mammary LH and GnRH were increased from diestrus I stage to estrus stage, and the increased levels were maintained in pregnant, lactation and involution stages. To test the hypothesis that the alteration in mammary LH expression might be steroid-dependant, ovariectomy(OVX) and steroid supplement model was employed. As expected, supplement of estradiol(E$_2$) after OVX remarkably decreased serum LH level compared to that in serum from vehicle-only treated rats. Likewise, administration of E$_2$ significantly reduced the mammary LH content. The present study demonstrated that (i) the LH expression in mammary gland could be altered by some physiological parameters such as estrous cycle, pregnancy, lactation and involution, and (ii) ovarian steroid especially estrogen seems to be one of major endocrine factors which are responsible for regulation of mammary LH expression.

  • PDF

Neuroendocrine Control of Gonadotropin Secretion during the Menstrual Cycle

  • Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.57-75
    • /
    • 1987
  • Two modalities of gonadotropin secretion, pulsatile gonadotropin and preovulatory gonadotropin surge, have been identified in the mammals. Pulsatile gonadotropin secretion is modulated by the pulsatile pattern of GnRH release and complex ovarian steroid feedback actions. The neural mechansim that regulates the pulsatile release of GnRH in the hypothalamus is called "GnRH pulse generator". Ovarian steroids, estradiol and progesterone, appear to exert thier feedback effects both directly on the pituitary to modulate gonadotropin release and on a hypothalamic site to modulate GnRH release; estradiol primarily affects the amplitude while progesterone decreases the frequency of the pulsatile GnRH. Steroid hormones are known to affect catecholamine transmission in brain. MBH-POA is richly innervated by NE systems and close apposition of NE terminals and GnRH cell bodies occurs in the MBH as well as in the POA. NE normally facilitates pulsatile LH release by acting through ${\alpha}-receptor$ mechanism. However, precise nature of facilitative role of NE transmission in maintaining pulsatile LH has not been clearly understood. Close apposition of DA and GnRH terminals in ME might permit DA to influence GnRH release. Action of DA transmission probably is mediated by axo-axonic contacts between GnRH and DA fibers in the ME. Dopamine transmission does not normally regulate pulsatile LH release, but under certain conditions, increased DA transmission inhibit LH pulse. Endogenous opioid acts to suppress the secretion of GnRH into hypophysial portal circulation, thereby inhibiting gonadotropin secretion. However, an interaction between endogenenous opioid peptides and gonadotropin release is a complex one which involves ovarian hormones as well. LH secretion appears to be most suppressed by endogenenous opioids during the luteal phase, at a time of elevated progesterone secretion. The arcuate nucleus contains not only cell bodies for GnRH and ${\beta}-endorphin$ but also a dense aborization of fibers suggesting that GnRH release is changed by the interactions between GnRH and ${\beta}-endorphin$ cell bodies within the arcuate nucleus. The frequency and amplitude of pulsatile LH release seem to be increased during the preovulatory gonadotropin surge. Estradiol exerts positive feedback action on the hypothalamo-pituitary axis to trigger preovulatory LH surge. GnRH is also crucial hormonal stimulus for preovulatory LH surge. It is unlikely, however, that increased secretion of GnRH during the preovulatory gonadotropin surge represents an obligatory neural signal for generation of the LH discharge in primates including human. Modulation of preovulatory LH surge by catecholamines has been studied almost exclusively in rats. NE and E may be involved in distinct way to accumulate GnRH in the MBH and its release into the hypophysial portal system during the critical period for LH surge on proestrus in rats. However, the mechanisms whereby augmented adrenergic transmission may facilitate the formation and accumulation of GnRH in the ME-ARC nerve terminals before the LH surge have not been clearly understood.

  • PDF

DDT Reduced Testosterone and Aromatase Activity Via ER Receptor in Leydig Cell (DDT의 Aromatase 증가에 의한 Testosterone 감소효과)

  • Lee, Kyung-Jin;Wui, Seong-Uk;Jin Heo;Kim, Sun-Hee;Jeong, Ji-Yeon;Lee, Jong-Bin
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Dichlorodiphenyltrichloroethane (DDT), is a widespread environmental pollutant. In this study, we investigated the effect of DDT on testosterone production through aromatase and investigated its molecular mechanism in testicular leydig cell, R2C. We investigated that the effects of DDT on testosterone production and its effects on aromatase activity in R2C cell by radio immunoassay (RIA). As the results, the potent leyding cell activator LH increased testosterone production compared to the control. DDT exposure significantly decreased testosterone production in R2C cell and DDT alone affected T reduction in a dose-dependent manner in R2C cell slightly. In addition, DDT was found to increase aromatase activity in R2C cell in a dose dependent manner. In order to assess whether the suppressive effects of DDT on LH-inducible testosterone production might be influenced by the ER, ICI 182.780, a pure antiestrogen, was used, and it was found that these inhibitory effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the suppressive effects of DDT. Furthermore, the inducible effects of DDT on aromatase might be influenced by the ER, ICI 182.780 was used, and it was found that these enhancing effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the inducible effects of DDT. Our results indicated that DDT inhibition of LH-inducible testosterone production in R2C is mediated through aromatase. However, the precise mechanisms by which DDT enhance in leyding cell remains unknown. The current study suggests the possibility that DDT might act as a modulator aromatase gene transcription.

Effects of Paljinickmohwan on the Ovulation and Ovary in Rats (팔진익모환이 백서의 배란과 난소에 미치는 영향)

  • Jung Woo Suk;Kang Young Keum;Choi Chang Min;Kim Song Baeg;Yoo Sim Keun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1463-1470
    • /
    • 2004
  • Paljinickmohwan(八珍益母丸) is used in female infertility. especially due to deficiency of qi and blood or Qihyulyanghe(氣血兩虛). An attempt was made to evaluate the influences of PJIMH on the serum concentrations of FSH, LH, and estradiol(E2), the histological changes of ovary and the immunohistochemical staining for AT2 receptor in ovary of rats. The results of the study were as follows : Blood FSH level significantly increased in experimental group as compared with control group. In blood LH level, experimental group as compared with control group showed no efficacy. Blood E2 level significantly increased in experimental group as compared with control group. In histological observations of ovary, ovulation increased in experimental group as compared control group, which showed no efficacy. In observations of immunohistochemical staining for AT2 receptor in ovary, there is no difference between control group and experimental group. According to these results, it can be concluded that PJIMH influences ovary to increase the ovulation of rats.

Mutations of Constitutive Activation and Mutations That Impair Signal Transduction Modulate the Agonist-stimulated Internalization of the Lutropin/choriogonadotropin Receptor

  • Park, J.J.;Kim, M.S.;Lee, Y.Y.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.83-83
    • /
    • 2003
  • The lutropin/choriogonadotropin receptor (LHR) is a member of the rhodopsin-like subfamily of G protein coupled receptor (GPCRs), that has been shown to mediate the internalization of its two naturally occurring agonist, lutropin and choriogonadotropin (CG). The clustered agonist-receptor complex is internalized by a dynamin-dependent pathway and traverses the endosomal compartment without agonist dissociation Dissociation of the agonist-receptor complex occurs in the lysosomes, where both the agonist and receptor are degrade. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty (FMPP). A FMPP is a form of sexual precocious puberty in boys in which testosterone levels are elevated independent of changes in luteinizing hormone-releasing hormone and serum luteinizing hormone levels, We have now analyzed two naturally occurring, constitutively active mutants of the human LHR. These mutations were introduced into the rat LHR (rLHR) and are designated L435R and D556Y. Cells expressing rLHR-D556Y bind human choriogonadotropin (hCG) with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. Cells expressing rLHR-L435R also bind hCG with normal affinity, exhibit a 47-fold increase in basal cAMP, and do not respond to hCG with a further increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17- fold, respectively We conclude that the state of activation of the rLHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing rLHR-L435R is due to the fast rate of internalization of the bound hCG. The finding that membranes expressing rLHR-L435R respond to hCG with an increase in adenylyl cyclase activity supports this suggestion. Autonomous Leydig cell activity in FMPP is caused by a constitutively activating LH/CGR.

  • PDF