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INTRODUCTION

Two modalities of gonadotropin secretion
have been identified in the mammals. The basal
mode is characterized by episodic gonadotropin
discharge whose frequency and amplitude may
vary considerably during the day in male and
according to different phases of reproductive cycle
in female. Additionally, in adult female, pre-
ovulatory mode is characterized by fast and high
amplitude pulses constituting midcycle gonado-
tropin surge followed by ovulation.

GnRH (gonadotropin releasing hormone) is
the primary neural signal involved in regulating
gonadotropin release from the pituitary gonado-
tropes. It is evident that GnRH is released from
the hypothalamus in a pulsatile fashion. The
arcuate area (AC) of the medial basal hypothal-
amus (MBH) generates a signal at approximately
hourly intervals to induce the release of GnRH
into the hypophysial portal circulation. The hour-
ly GnRH pulses, then stimulate the gonadotropes
to release pulses of LH and FSH, which, in turn,
induce morphological and secretory changes in
the ovaries. The periodic pattern of GnRH disch-
arge and complex gonadal steroid feedback ac-
tions at the pituitary and/or hypothalamus are
important variables which determine the two
modalities of gonadotropin, pulsatile gonadotro-
pin and preovulatory gonadotropin surge. In
addition, neurotransmitters and neuropeptides are
known to play the potential role in the control of
gonadotropin secretion.

The purpose of this review is to provide and to
discuss recent advances in understanding funda-
mental underlying neural mechanism in the con-
trol of two modalities of gonadotropin secretion
during the menstrual cycle.

REGULATION OF PULSATILE
GONADOTROPIN RELEASE

P
Characteristics of pulsatile gonadotropin
release during the menstrual cycle

It has been demonstrated that gonadotropins
are released in rapid, rhythmic pulses, super-
imposed on a low level of continuous secretion
(Santen & Bardin, 1973: Crowley et af., 1985).
Pulsatile patterns of gonadotropin secretion may
be found in all vertebrates. Frequency and ampli-
tude of LH pulse were shown to vary according to
the phase of the menstrual cycle in women (Yen
et al., 1972; Crowley et al., 1985 Filicori et al.,
1986; Lam & Ferin, 1987). Pulsatile increments in
gonadotropin release occur every 60 to 90 minutes
throughout most of the cycle but decrease sharply
following ovulation and corpus luteum formation,
resulting in frequency of every 4 to 5 hours during
the mid and late luteal phase (Rebar & Yen, 1979;
Crowley et al., 1985). A comparison of LH pulse
patterns between the luteal and early follicular
phases shows not only stricking difference in the
frequency but also in the amplitude of the LH
pulse. Pulse amplitude during the luteal phase was
nearly double that in the early follicular phase
(Norman et al., 1984; Ferin et al., 1985). How-
ever, the preovulatory LH surge was characterized
by high frequency, and high amplitude LH pulses
(Marut et al., 1981; Norman et al., 1984).

Current evidence suggests that the pulsatile
secretion of gonadotropins is not intrinsic to the
pituitary, but a reflection of intermittent hypoth-
alamic stimulation (Knobil, 1981; Wildt er a/.,
1981a). Pulsatile patterns are readily detectable
especially in gonadectomized subjects. The ovar-
iectomized monkey exhibits a characteristic hour-
ly (circhoral) pattern of LH pulsatile secretion.



The pulsatile administration of GnRH at hourly
intervals to castrated animals bearing hypoth-
alamic lesions that eliminate endogenous GnRH
secretion restores circhoral LH secretion and
returns gonadotropins to preexisting castrated
levels. In contrast a constant GnRH infusion
induces a transient rise in LH which again fall to
undetectable levels. Indeed, the direct measure-
ment of GnRH in the hypophysial portal plasma
of rhesus monkeys has clearly demonstrated epi-
sodic fluctuations of GnRH levels (Carmel ef al.,
1976). In addition, circhoral pulses of GnRH have
recently been detected in the peripheral plasma of
women (Elkind-Hirsch et al., 1982). Thus, the
normal pattern of pulsatile gonadotropin secre-
tion appears to occur in response to the pulsatile
release of GnRH into the portal circulation.

Hypothalamic GnRH pulse generator

Now, it is clearly known that GnRH release
into the hypophysial portal vein is characterized
by intermittent pulses superimposed on a lower
level of continued secretion. The neural mecha-
nism that governs the intermittent release of
GnRH in the hypothalamus has been called as
“GnRH pulse generator” (Lincoln ez al., 1985).

The demonstration of GnRH pulse generator
activity has been provided by Clarke and Cum-
mins (1982), who monitored fluctuations of GnRH
concentrations in hypophysial portal plasma of
the ovariectomized ewe. It was shown that distinct
increments in GnRH concentrations in hypo-
physial portal plasma were observed at approxi-
mately hourly intervals and, moreover, GnRH
discharges were temporally correlated with epi-
sodes of LH secretion. Similar patterns of fluctuat-
ing GnRH concentrations in hypophysial portal
blood were observed in other species, including
the monkey although simultaneous monitoring of
intermittent LH secretion was not conducted
(Carmel et al., 1976; Sarkar & Fink, 1980).
Furthermore, electrical recordings of neuronal
activity in MBH of ovariectomized rhesus mon-
keys show intermittent electrical activity at hourly
intervals which correlates well with the pulsatility
of LH in the peripheral circulation (Knobil,
1980).

Then, question might be asked about where
the GnRH pulse generator is located and how
it does work: Immunocytochemical methods have
demonstrated clusters of perikarya of GnRH-con-
taining cells in the preoptic area-septal region

(POA-S) and in the MBH in human, rhesus
monkey, guinea pig, and rabbit (Zimmerman &
Lobo, 1976; Schwanzel-Fukuda et al., 1981,
Silverman et al., 1982). GnRH perikarya has also
been found in the POA-S of rats (Merchenthaler
et al., 1980), but the presence of these peptidergic
neuronal cell bodies in the MBH has been the
subject of debate (Witkin et al., 1982). Recent
evidence, however, suggests that GnRH cell bo-
dies are present in the MBH of rat (Kawano&
Daikoku, 1981) and that the arcuate nucleus may
contain some GnRH cell bodies (Kelly er al.,
1982). Thus, GnRH cell bodies are distributed in
two anatomically distinct regions; one in the POA-
S and the other in the MBH. There are, of course,
additional GnRH cell bodies in other regions as
well.

Then, question might be raised whether or not
both regions are responsible for GnRH release
and whether or not both regions are responsible
for driving the pulsatile pattern of LH release.
Despite lack of direct evidence, there are some
indirect indications to support that the MBH
cluster of GnRH cell bodies is crucial in driving
pulsatile LH release. Complete anterior deaffer-
entation of MBH failed to eliminate pulsatile
release patterns in ovariectomized rhesus monkey
(Knobil, 1974; Krey et al., 1975), rat (Blake &
Sawyer, 1974; Soper & Weick, 1980), and sheep
(Pau et al., 1982). Thus, there exists the GnRH
pulse generator within the MBH (and perhaps in
POA-S as well).

Then, how is the activity of GnRH neurons
controlled and how does this relate to the regula-
tion of gonadotropin secretion? Two general
types of central act modulate the activity of GnRH
neurons relevant to gonadotropin secretion; con-
trol by feedback action of ovarian steroidsdeliver-
ed by the blood, and control by other neurons
through synaptic neurotransmissions. Each of these
is now considered separately.

Modulation of pulsatile gonadotropin secretion
by ovarian steroids

There is little doubt that changes in pulsatile
LH secretory patterns during the menstrual cycle
are influenced by ovarian steroids (Yen, 1980; Yu
et al., 1981; Ryu & Hong, 1983). Although the
physiological significance of these changes in LH
pulse characteristics remains to be clearly defined,
it is assumed that they do play a role in the
control of cyclic events.

Then, next question is that such changes in



pulsatile patterns result from actions of ovarian
steroids at a central site or a pituitary site. Deter-
mination of the sites where estradiol and proges-
terone exert their feedback actions remains contro-
versial.

Reviews on the site at which estradiol exerts its
feedback action on gonadotropin secretion in the
monkey have emphasized a hypophysial site of
action (Knobil, 1980; Goodman & Knobil, 1981).
The evidence is derived from experiments in
monkeys bearing MBH lesions or in which the
pituitary stalk has been sectioned and to which
hourly GnRH pulses have been administered to
elevate LH to prelesion control concentrations.
Administration of estradiol to such animals in
which the potential hypothalamic feedback site
has been destroyed or in which the pituitary has
been isolated from direct brain influences,
produced a decrease in pulsatile LH secretion
(Plant et al., 1978b), suggesting a direct action of
estradiol on the anterior pituitary. Similar estradi-
ol effects on the pituitary gland were seen in intact
monkeys in which systemic estradiol administra-
tion dampened the increase in serum LH observed
after infusion of GnRH (Spies & Norman, 1975).
The fact that this phenomenon has also been
observed in vitro (Chappel et al., 1981) confirms
a direct hypophysial estradiol effect.

On the one hand, the evidence also clearly
indicates that ovarian steroids, in addition to their
hypophysial effects, influence gonadotropin secre-
tion by acting at a hypothalamic sites as well. The
demonstration of estradiol receptor (Phaff ez al.,
1976; Garris et al., 1981) in the MBH (with heavy
labeling in the arcuate nucleus) supports this
conclusion. Furthermore, estradiol injection at
specific intrahypothalamic sites in monkeys bear-
ing multiple intracranial cannulae depressed LH
levels and mimicked the effects of intravenous
estrogen administration (Ferin ez al., 1985). Most
of the responsive sites were situated in the MBH,
but extended to include the mammillary complex
and perifornical nucleus (Ferin et al., 1974).
Furthermore, push-pull cannulae placed within
the ventromedial arcuate nucleus of the hypoth-
alamus revealed that in vivo release of GnRH was
altered by administration of estrogen to ovar-
iectomized rats (Ramirez & Dluzen, 1987). Such
results provide evidence that estradiol can act at a
hypothalamic site to inhibit LH secretion. Addi-
tional indirect evidence includes the observation
that GnRH receptor concentrations are increased
during the negative feedback phase of estriadiol

(Adams ef al., 1981). Since there appears to be an
inverse correlation between GnRH secretion and
GnRH receptor, this experiment would also sug-
gest that estradiol inhibits GnRH release.

Fewer experiments have investigated the site of
progesterone action in primates. However, proges-
terone uptake occurs in the hypothalamus (Garris
et al., 1982). Progesterone was found to inhibit
estrogen-induced gonadotropin surges in the mon-
key by acting at the level of CNS (Wildt et al,,
1981a). In sheep, progesterone decreases the fre-
quency of LH pulse without reducing amplitude
or the response to exogenous GnRH, suggesting
that progesterone suppresses LH secretion by
acting at the brain to decrease the frequency of
GnRH pulses (Goodman & Karsch, 1980).

These results provide evidence that both ster-
oids, estradiol and progesterone, act on CNS site
as well as pituitary site to modify the secretion of
gonadotropins. More convincing evidence, how-
ever, would be provided by demonstrating that
both steroids influence hypothalamic GnRH pulse
generator.

Regulation of the GnRH pulse generator by
progesterone: Progesterone appears to act on the
hypothalamic GnRH pulse generator. During the
menstrual cycle, dramatic changes are observed in
the frequency of pulsatile LH secretion (Yen et
al., 1972; Filicori & Crowley, 1983; Norman et
al., 1984; Reame et al., 1984) and therefore, by
inference, of the hypothalamic GnRH pulse
generator (Plant, 1986). LH pulse frequency
during the greater part of the luteal phase is
markedly slower than that during the follicular
phase (Crowley et al., 1985). The first convincing
evidence that ovarian progesterone is responsible
for the deceleration of the hypothalamic GnRH
pulse generator during the luteal phase was pro-
vided by Goodman and Karsch (1980) in the ewe.
In women, progesterone administration in the
follicular phase can affect a slowing of LH pulse
frequency and an augmentation in LH pulse
amplitude (Soules et al., 1984). In ovariectomized
monkeys, the frequency of gonadotropin dis-
charge was reduced by progesterone (Knobil,
1981).

A neurochemical basis for the progesterone
deceleration of the hypothalamic GnRH pulse
generator in primates is provided by the identifi-
cation of receptor for progesterone in cytosolic
extract of hypothalamus in monkeys (Krey &
McEwen, 1983), and by autoradiographic demon-
stration of heavy radiolabeling of neurons within



the arcuate nucleus after administration of syn-
thetic progestin (Garris et al., 1981). In both
human and rhesus monkey, administration of
naloxone, an opiate receptor antagonist, during
the luteal phase of the menstrual cycle results in a
dramatic acceleration in° LH pulse frequency
(Ropert et al., 1981; Van Vugt et al., 1984; Ferin
et al., 1985), suggesting that endogenous opioid
peptides may be involved in mediating the action
of progesterone to decelerate the hypothalamic
GnRH pulse generator. Thus, the modulation of
GnRH and consequently LH pulsatile secretion
by progesterone involves an interaction with
hypothalamic opioid peptide network.

In addition to the ability of progesterone to
retard the hypothalamic GnRH pulse generator,
this steroid is also able to exert, under certain
conditions, marked facilitatory effect on gonado-
tropin secretion (Leyendecker et al., 1976; Yeo-
man & Terasawa, 1984) that appears to be medi-
ated by both hypothalamic and pituitary sites of
action (Wildt et al., 1981b; Yeoman & Terasawa,
1984). Progesterone is also able to block the
action of estradiol that induces the preovulatory
gonadotropin surge (Diersckeh et al.,1973), ap-
parently by acting on the CNS that may involve
the production of a release-inhibiting factor (Pohl
et al., 1982).

Physiological significance of the action of
progesterone in the overall regulation of the
menstrual cycle remains an area of debate.

Regulation of GnRH pulse generator by
estradiol: LH pulse frequency of approximately
one to two pulses/h has been observed at the
beginning of the follicular phase in both human
(Reame et al., 1984; Yen et al., 1972; Backstrom
et al., 1982; Soules et al., 1984) and monkey
(Marut et al., 1981), and a relatively short LH
interpulse interval appears to be maintained th-
roughout the entire follicular phase (Backstrom et
al., 1982; Norman et al., 1984; Soules et al.,
1984), despite a substantial rise in circulating
estradiol levels. In women, an acceleration in LH
pulse frequency has actually been reported in
association with the elevation in estradiol levels
during the late follicular phase (Backstrom et al.,
1982; Reame et al., 1984; Soules er al., 1984).
These findings suggest that physiological concen-
trations of circulating estradiol in contrast to
progesterone and testosterone are probably incap-
able of decelerating the hypothalamic GnRH
pulse generator in primates.

Estradiol is a major ovarian factor of the

negative feedback loop that regulates gonado-
tropin secretion during the follicular phase of the
menstrual cycle (Knobil, 1974). In the monkey,
microinjection of estradiol into various neural
sites in the hypothalamus (Ferin et al., 1974) and
miniinfusion of estradiol into the third ventricle
(Chappel et al., 1981) suppressed LH secretion
suggesting a hypothalamic site of estradiol action
in the negative feedback control of gonadotropin
secretion. On the other hand, unequivocal eviden-
ce for a hypophysial site for the negative feedback
action of estradiol on gonadotropin. secretion has
been obtained from studies ‘of the arcuate-
lesioned, GnRH-replaced rhesus monkey (Plant ez
al., 1978a). Moreover, folliculogenesis and ovula-
tion may be induced in hypothalamic-lesioned,
ovarian intact monkeys and in women with
hypothalamic amenorrhea after chronic treatment
with intermittent GnRH infusions of invarient
frequency, demonstrating in compelling fashion a
physiologically relevant negative feedback loop
between the ovary and pituitary (Plant, 1986).

Estradiol is also able to facilitate LH and FSH
release, and this so-called positive feedback action
plays a major role in eliciting the preovulatory
gonadotropin surge in primates (Knobil, 1974;
Young & Jaffe, 1976). That estradiol exerts posi-
tive feedback action on preovulatory gonado-
tropin surge will be discussed separately in this
review.

In the monkey, distribution of ovarian steroid-
concentrating neurons (Phaff et al., 1976; Garries
et al., 1982) and of GnRH neurons generally
overlap, especially in the preoptic-anterior
hypothalamic and MBH regions. In view of the
role that these steroids exert action on GnRH
secretion, it would be logical to assume a direct
cellular correlation. However, in recent studies in
the rodent during which the immunocytochemical
method for localizing GnRH was coupled with an
autoradiographic method for detecting estrogen
concentrating neurons, doubly labeled cells were
not seen (Shivers et al., 1983). The results suggest
that genomic regulating effects of estrogens which
depend on nuclear retention, are not exerted
directly on most GnRH neurons, but must be
mediated by other classes of neurons. Alternative-
ly, ovarian steroids may exert their effects through
nongenomic mechanism perhaps at the membrane
levels. Furthermore, Melrose and Gross (1987)
reported that under physiological conditions,
GnRH neurons are not directly influenced by
estradiol and progesterone in male rats. Although
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this type of correlative study remains to be done in
the primates, the results suggest that the effects of
ovarian steroids on GnRH and gonadotropin
secretion may be relayed by neurons other than
GnRH containing neurons.

Involvement of catecholamines in the modula-
tion of pulsatile gonadotropin release

Steroid hormones are known to affect cate-
cholamine transmission in brain (Barraclough &
Wise, 1982) and also to influence pulsatile release
of LH (Gallo, 1980; Knobil, 1974, Weick, 1981).
The question, therefore, arises: does change in
brain catecholamines induced by ovarian steroids
cause change in pulsatile GnRH-LH release ?

Dopamine (DA) transmission in the MBH was
increased by the treatment of estradiol benzoate in
ovariectomized rats (Advis et al., 1980) while
estradiol benzoate suppressed pulsatile LH release
(Weick, 1977). These results suggest that increased
dopamine transmission in the MBH is inhibitory
to the GnRH-LH pulse generating system.

Morphological studies of the median eminence
(ME) have demonstrated close apposition of DA
and GnRH terminals that may permit DA to
influence GnRH release (Ajika, 1980). However,
it might be premature to state that DA effects on
LH secretion are exerted exclusively at the ME,
particularly because DA receptors on pituitary
lactotrophs may influence prolactin secretions,
which in turn, may modulate LH release (Beck et
al., 1977). Some investigators reported that DA or
DA receptor stimulators suppressed serum LH
levels (Beck et al., 1978; Ramirez et al., 1984)
whereas others suggested an increase of LH soon
after such treatment (Kamberi et al., 1970; Vi-
jayan et al., 1978). Moreover, Jarjour et al.,
(1986) reported that DA induced GnRH release in
male rats, suggesting that this is most probably
attributable to DA-induced release of hypoth-
alamic norepinephrine (NE) which, in turn, acts
through adrenergic receptors on GnRH neurons
to stimulate GnRH release. More confusedly,
tyrosine hydroxylase inhibitor, @-methyl-para-
tyrosin (¢-MPT), which lowers hypothalamic DA
content had no effect on LH levels in ovar-
iectomized rats (Donoso et al., 1971). Neverthe-
less, it was found that when DA affected LH
levels, they did so by an action on brain rather
than an anterior pituitary (Ryu et al., 1980) and
it was inferred that action of DA transmission
probably was mediated by axo-axonic contacts

between GnRH and DA fibers in the ME
(Schneider et al., 1969). DA receptor stimulator
such as apomorphine blocked pulsatile LH inrats
{Drouva & Gallo, 1977), and DA infused into the
third ventricle had suppressive effects on pulsatile
LH (Gallo & Drouva, 1979). Pimozide, DA recep-
tor blocker, reversed the effects of apomorphine
(Gallo, 1981). Thus, increase in DA transmission
suppresses frequency and/or amplitude of pul-
satile LH release.

However, pimozide alone fails to alter pul-
satile LH release in ovariectomized rats as does
a-butaclamol, another DA receptor blocker
(Drouva & Gallo, 1976; Gallo, 1981). o-AMPT
decreases hypothalamic DA content and yet fails
to affect pulsatile LH release in ovariectomized
rats (Drouva & Gallo, 1976; Gallo, 1981). These
data suggest that in rats DA transmission does not
normally regulate pulsatile LH release, but that
under certain conditions of drug treatments, in-
creased DA transmission inhibits LH pulse
(Drouva & Galio, 1976).

However, conflicting data have been reported.
The DA receptor blockers, haloperidol and chlor-
promazine, suppressed pulsatile LH discharge in
ovariectomized rhesus monkey (Bhattacharya et
al., 1972). This suggests that DA transmission
facilitates pulsatile LH release. Interpretation of
these conflicting data are difficult. However, fail-
ure to inhibit pulsatile LH release by DA receptor
blocker such as pimozide is not conclusive evi-
dence that DA transmission is not involved in LH
release. Conversely, when DA receptor antagonist
such as haloperidol blocks pulsatile LH dis-
charge, this can not be taken as evidence that DA
transmission normally facilitates LH pulses
(Kaufman et al., 1985). This may be partly due to
the uncertainty about the nature of DA receptors
in the hypothalamus and to the possibility that two
types of DA receptors may be involved (Ojeda &
McCann, 1978). For example, pimozide may act
on one type of DA receptor and haloperidol on
another, thereby exerting effects in opposite direc-
tions with respect to pulsatile LH release (Fink et
al., 1982).

The role of estradiol in NE turnover was also
extensively investigated in rat brain. NE content
in ME increases after ovariectomy and decreases
after the treatment of estradiol benzoate in long-
term ovariectomized rats (Advis et al., 1980),
suggesting that increases in NE stimulation of
GnRH release in the ME are importantly involved
in facilitating LH release.



However, this notion seems to be contradicted
by the finding that EB treatment did not alter NE
turnover in ME (Crowley, 1982), even though
such treatment suppressed pulsatile LH secretion
in long-term ovariectomized rats (Weick, 1977).
These results suggest that increased NE transmis-
sion in the ME is not obligatory in facilitating
pulsatile GnRH-LH secretion. However, during a
normal rat estrus cycle, pulsatile GnRH (Levine &
Ramirez, 1982) and LH releases (Gallo, 1981a,
1981b) occur with high frequency at a time when
NE turnover is significantly elevated in MBH as
well as ME at proestrus afternoon (Rance et al.,
1981).

It is clear that MBH-POA is richly innervated
by NE systems (Palkovits, 1981) and that close
apposition of NE terminals and GnRH cell bodies
occurs in the MBH as well as in the POA (Hoff-
man et al., 1982; Jennes et al., 1982). Therefore,
it is assumed that alterations in NE transmission
might influence pulsatile release of GnRH. Then,
how does NE transmission affect pulsatile LH
release ? This question was first explored in ovar-
iectomized rhesus monkeys (Bhattacharya et al.,
1972; Knobil, 1974). Phentolamine and phenoxy-
benzamine, which have g-receptor blocking pro-
perty, suppressed pulsatile LH release within
seconds or minutes, whereas §-blocker propranol-
ol was without effect on pulsatile LH discharge.
More recent work with this species clearly shows
that effective drugs exert their actions at the MBH
level rather than at the level of the pituitary
(Knobil, 1980). Futhermore, Kaufman et al (1985)
reported that GnRH pulse generator activity was
inhibited by phentolamine. Thus, NE normally
facilitates pulsatile LH output by acting through
an g-receptor mechanism (Jarjour et al., 1986).
However, precise nature of facilitative role of NE
transmission in maintaining pulsatile LH has not
been clearly understood. The facilitative action of
NE transmission on pulsatile LH output appears
to be exerted on frequency and amplitude parame-
ters, but the relation between episodic fluctuations
in NE transmission and LH pulses does not
appear to be of one-to-one variety (Estes, 1982).

Whether NE transmission is obligatory for
pulsatile LH and whether NE directly influences
such pulsing, is not yet clear. Experiments that
assess drug effects on GnRH pulses, rather than
drug effects on LH pulses might be helpful in
answering the question of how NE transmission
influences the hypothalamic GnRH pulse genera-
tor. Despite the accumulating data that indicate a

facilitative role for NE transmission in pulsatile
LH release, there are also evidence to indicate that
an acute increase in NE transmission suppresses
pulsatile LH release. Third ventricle infusions of
NE, a-receptor agonist such as phenylephrine or
clonidine, or B-receptor blocker agonist such as
isoproterenol significantly and acutely suppressed
the frequency of pulsatile LH release in rats
(Leung et al., 1982).

It is, therefore, summarized that increased DA
transmission plays no crucial role in facilitating
the pulse generator, especially under physiological
conditions. Increased NE turnover generally
appears to speed up the frequency of the pulse
generator. However, under particular experimen-
tal conditions, which may lead to estradiol-induc-
ed supernormal NE transmission, an inhibitory
effect of NE on the GnRH-LH pulse generator can
occur. Whether or not NE transmission is absolu-
tely essential for operation of the pulse generator
has not been established.

Involvement of Opiate Peptide in the Modula-
tion of Pulsatile Gonadotropin Release

Evidence has accumulated that endogenous
opioid peptides play an important role in the
control of gonadotropin secretion in the primates
including the human.

fF-endorphin neuronal cell bodies are preferen-
tially concentrated in areas known to be involved
in the control of gonadotropin secretion. The
localization of S-endorphin within the hypothala-
mus which in the monkey are rich in GnRH
provides anatomical evidence for interactions
between B-endorphin and GnRH. These interac-
tions may include neuron to neuron com-
munications within the arcuate region, and area in
which cell bodies for both peptides are located, or
axo-axonal influences within the median eminence
which contains terminals for both GnRH and
B-endorphin axons (Ferin et al., 1985).

A single intravenous injection of morphine or
an intraventricular injection of g-endorphin
resulted in a decrease in circulating LH and FSH
concentrations (Ferin et al., 1982). The reduction
in serum LH seen after administration of opiates
is the result of a reduced frequency of pulsatility
rather than a reduced amplitude of each indivi-
dual secretory pulse (Sylvester er.al., 1982). An
inhibitory effect of opiates on FSH was observed
as well although it was less pronounced. Similar
results have been observed in the human (Reid et



al., 1981).

Then, does endogenous opioids themselves
control gonadotropin secretion ? When naloxone
was injected daily throughout the entire menstrual
cycle in the monkey, LH responses to naloxone
were significant only during the luteal phase (Van
Vugt et al., 1983). During the luteal phase,
administration of naloxone increased LH secre-
tion. In contrast, naloxone was unable to stimu-
late LH secretion during the follicular phase.
These data agree with that gonadotropin secretion
was stimulated by naloxone during the luteal
phase, but not the early follicular phase of the
menstrual cycle in the human (Quigley & Yen,
1980). Thus, endogenous opioid peptides modify
gonadotropin secretion, but they do so only under
specific endocrine conditions. However, an interac-
tion between endogenous opioid peptides and
gonadotropin release is a complex one which
involves ovarian hormone as well. In the human
(Ropert et al., 1981) and the monkey (Ferin et
al., 1985), LH secretion appears to be most sup-
pressed by endogenous opioids during the luteal
phase, at a time of elevated progesterone secretion.

Modulation of 2-endorphin by ovarian steroi-
ds: Differential LH response to naloxone at var-
ious time of the menstrual cycle suggests that
endogenous opioid secretion may fluctuate with
the endocrine gonadal steroid milieu (Ferin et al.,
1985).

B-endorphin level in hypophysial portal vein
is believed to reflect hypothalamic 3-endorphin
activity because axon derived from g-endorphin
cell bodies in the arcuate region terminates near
portal vessels. Following ovariectomy, portal
B-endorphin concentration became undetectable
(Wehrenberg et al., 1982). Ovarian steroid repla-
cement in ovariectomized monkeys restored portal
B-endorphin levels (Wardlaw et al., 1982). Thus,
it appears that ovarian steroids are necessary for
the release of hypothalamic 3-endorphin. During
the menstrual cycle, S-endorphin release was
undetectable at menstruation when ovarian ster-
oid concentrations are lowest (Ferin et al., 1985).
In contrast, as ovarian steroid secretion increased
during the late follicular phase and luteal phase,
increased amounts of g-endorphin were released
into the portal circulation (Wehrenberg et al.,
1982). Largest amounts of S-endorphin appear to
be secreted in the presence of progesterone. How-
ever, when progesterone alone was given to ovar-
iectomized monkeys there was no increase in
B-endorphin secretion (Ferin et al., 1985) indicat-

ing that progesterone action usually is the conse-
quence of a synergistic effect with estrogen (Ma-
clusky et al., 1980). Thus, hypothalamic A-
endorphin activity seems to be modulated by
ovarian steroids.

A role of B-endorphin during the menstrual
cycle: As mentioned above, hypothalamic 3-
endorphin secretion into the hypophysial portal
circulation fluctuates during the menstrual cycle
in the monkey reaching the maximum during the
luteal phase at a time when LH pulse frequency is
slowest. Then, question is asked if endogenous
opioid peptides participate in decreasing LH
pulse frequency observed during the luteal phase.
Ferin et al. (1985) examined the effects of nalox-
one infusions on LH pulse frequency. LH pulse
frequency was clearly increased during the nalox-
one infusion period as compared to the preceding
control period during the luteal phase. LH pulse
amplitude, however, was unchanged by naloxone
administration. Similar results were reported in
women during the luteal phase (Ropert et al.,
1981) as well as in normal men (Ellingboe et al.,
1982). Thus, it is assumed that during the luteal
phase a decrease in LH pulse frequency was due
to an increase in endogenous opioid, resulting in
inhibition of GnRH neurons.

Site and mechanism of B-endorphin action:
Then, where does @-endorphin act to inhibit
gonadotropin secretion ? The presence of high
concentration of biologically active g-endorphin
in the hypophysial portal circulation suggests that
it may exert direct effects at the anterior pituitary
level. However, in pituitary stalk-sectioned mon-
keys in which the pituitary has been isolated from
direct hypothalamic influences, morphine
pretreatment did not affect the LH response to
GnRH stimulus (Ferin et al., 1982). This result is
consistent with in vitro studies in the rodent,
which failed to show a direct opiate effect either
on gonadotropes (Cicero et al., 1979) or lac-
totropes (River et al., 1977). Furthermore, hypo-
physial site of action was not supported by the
absence of opioid receptors in anterior pituitary
(Simantov & Snyder 1977). Unfortunately, there is
presently no direct in vivo evidence that the secre-
tion of GnRH responsible for gonadotropin
release is modified by B-endorphin in the pri-
mates. However, there is a sufficient indirect evi-
dence for such a conclusion. The in vitro GnRH
efflux from superfused human (Rasmussen et al.,
1983) or rat (Wilkes & Yen, 1981) medial basal
hypothalami was increased following naloxone



perfusion. The naloxone-induced release of LH in
the rat was blocked by the administration of
GnRH antagonist (Blank & Roberts,1982). Thus,
endogenous opioid acts to suppress the secretion
of GnRH into the hypophysial portal circulation,
thereby inhibiting gonadotropin secretion. The
arcuate nucleus contains not only cell bodies for
GnRH and g-endorphin but also a dense arbor-
ization of fibers (Ferin et al., 1985), suggesting
that GnRH release is changed by the interactions
between GnRH and pS-endorphin cell bodies
within the arcuate nucleus. Some of the opioid
peptide-containing fibers have been shown to
form axosomatic contact with other cells of the
arcuate nucleus, presumably containing other
peptides or neurotransmitters (Kiss & Williams,
1983). Opioid regulation of GnRH is exerted at
the level of the median eminence. Evidence indi-
cates that intense innervation by g-endorphin and
GnRH fibers, most of which origniate from cell
bodies in the arcuate area, can be seen in the
median eminence. This mechanism would allow
for f-endorphin control at the nerve terminal at
the point of GnRH release into the hypophysial
portal circulation. (Ferin et al., 1985)

However, whether inhibition of GnRH release
by B-endorphin is the result of a direct synapse or
whether neurotransmitters are intermediary has
not been demonstrated in the monkey. The most
obvious neurotransmitter candidates are norepine-
phrine, serotonin, and dopamine which have been
implicated in gonadotropin secretion. In the rat,
noradrenergic activity is required in order for
naloxone to stimulate LH release, since this action
can be prevented by prior administration of nore-
pinephrine synthesis inhibitors or antagonists
(Kalra, 1981). g-endorphin has been shown to
decrease dopamine turnover in the median emi-
nence (Deyo et al., 1979), and to increase reupta-
ke of dopamine into dopamine nerve endings
(George & Van Loon, 1982). However, little is
known about the effects of neurotransmitters on
LH secretion in the primates.

REGULATION OF PREOVULATORY
GONADOTROPIN SURGE

Preovulatory LH surge
In mammals that normally are spontaneous

ovulators, the obligatory hormonal trigger for LH
surge which results in ovulation appears to be

estradiol, and this steroid exerts positive feedback
action on the hypothalamo-hypophysial axis after
reaching critical concentration in circulation for a
sufficiently long period of time (Schwartz, 1969;
Knobil, 1974; Kalra, 1975; Goodman & Knobil,
1981; Drouva et al., 1982). The strength and
duration of estrogen action required for LH surge
may vary among species (Knobil, 1974; Good-
man & Knobil, 1981; Krey & Parsons, 1982). In
addition to estradiol, preovulatory progesterone
secretion may play a facilitative role in cyclic
surge of LH release in rats (Ramirez et al., 1984),
monkeys (Helmond et al., 1980; Terasawa et al.,
1982), and humans (Jaffe & Monroe, 1980). These
two steroids appear to be secreted in a pulsatile
fashion, but the precise function of such pulsatile
fluctuations on the LH surge mechanism is un-
known. Two other pituitary hormones, FSH and
prolactin, exhibit cyclic releases that coinside with
LH surges (Ryu et al., 1979, 1983; Ramirez et al.,
1984). LH, FSH, and prolactin can, under certain
experimental conditions, exert feedback effects on
neural activity (Moss, 1976) and in some cases
influence DA (Moore et al., 1980) or NE (Anton
et al., 1969) neurotransmission. Extensive studies
on pulsatile LH release during the menstrual cycle
have been reported in primates (Yen et al., 1972;
Norman et al., 1984; Filicori et al., 1986).
However, very little information is available on
alteration of the frequency and amplitude of
pulsatile LH release during the preovulatory LH
surge in primates including human. Terasawa er
al. (1987), however, reported that both the fre-
quency and amplitude of LH increase during the
progesterone-induced LH surge in rhesus mon-
keys.

However, the most crucial and the final hor-
monal stimulus for the LH surge is GnRH (Schal-
ly, 1978). That an increase in hypothalamic
GnRH secretion occurs in association with the
LH surge can no longer be disputed in view of
findings of increased concentrations of GnRH in
peripheral plasma of women (Elkind-Hirsch et
al., 1982; Miyake et al., 1983), and in hypo-
physial portal vein (Neil et al., 1977), CSF (Van
Vugt et al., 1985) and hypothalamic perfusates
(Levine & Spies, 1983; Norman et al., 1983) of
the thesus monkey during either spontaneous or
estrogen-induced gonadotropin surges. Elevations
in GnRH concentrations in peripheral (Ryu et
al., 1976; Kalra & Kalra, 1977) and hypophysial
portal plasma (Saker et al., 1976; Ching, 1982;
Fink et al., 1982) shortly before LH surge was



also observed in rats. Thus, GnRH is required for
cyclic surge of LH that results in ovulation. It is
unlikey, however, that the increased secretion of
GnRH during the preovulatory gonadotropin
surge represents an obligatory neural signal for
generation of the LH discharge because hypoth-
alamiclesioned monkeys and women with hypoth-
alamic amenorrhea exhibit ovulatory menstrual
cycles when intermittent stimulation with exo-
genous GnRH is provided (Crowley & McArther,
1980, Knobil et al., 1980, Leyendecker et al.,
1976). On the other hand, Norman et al. (1982)
failed to restore ovultory menstrual cycles with
intermittent GnRH replacement in stalk-sectioned
monkeys bearing Teflon barriers. This is the only
direct evidence to support that a neural signal is
an essential component of the neuroendocrine
mechanism that elicits the preovulatory gonado-
tropin surge in primates.

In rats, deafferentations that isolate the MBH
from the POA (Halasz, 1969) and POA lesion
(Barraclough et al., 1975) result in the loss of LH
surges with consequent anovulation. Thus, in rats,
GnRH neurons in the POA are apparently re-
quired for LH surge to occur. It is likely, however,
that some species do not require POA GnRH
neurons for generation of LH surge or ovulation
because rhesus monkeys continue to show LH
surge and to ovulate after surgical deafferentation
that separates the POA and MBH. Furthermore,
arcuate nucleus lesions prevent ovulation in rhe-
sus monkeys even when the POA is not damaged
(Plant et al., 1978a) and menstrual cyclicity
(Knobil et al., 1980) can be established by con-
stant, pulsatile administration of GHRH to mon-
keys with deafferentation of the MBH and lesions
of the arcuate nucleus. However, it may be pre-
mature to conclude that there is absolutely no
POA influence on LH surge in such species since
prenatally androgenized rhesus monkeys show a
delay in menarche (Goy, 1970) and tissue anterior
to the MBH has been shown to exert an influence
on LH surge in rhesus monkeys (Norman ef al.,
1976). Despite these species differences, the evi-
dence is compelling that MBH and/or POA
regions are obligatory for the cyclic surge of LH.

Medulation of LH surge by ovarian steroids

The hypothalamo-pituitary axis appears to be
extremely sensitive to the circulating ovarian ster-
oids during the cycle. Hypothalamus or pituitary
has its own threshold of responsiveness to the

steroids (Kalra & Kalra, 1981, 1982a, 1982b).

It is evident that estradiol is the primary
ovarian signal responsible for preovulatory LH
surge (Schwartz, 1969; Krey & Everett, 1973;
Kalra, 1975; Simon et al., 1987). Although action
of estradiol in facilitating the preovulatory LH
surge is essentially complete by 3:00 h of proestrus
in rats (Kalra, 1975), the continued presence of
elevated estradiol levels appears to augment pitui-
tary responsivenss to GnRH and releasable LH
stores (Cooper et al., 1973; Kalra & Kalra, 1974)
to prepare the impending GnRH hypersecretion
later in the afternoon. Furthermore, there is evi-
dence that estrogen increases the overall basal in
vivo GnRH release and produces further increases
in GnRH release during the preovulatory LH
surge (Dulzen & Ramirez, 1986). This change
appears to be attributable to increase in the fre-
quency of GnRH release during this period.

Although progesterone may not be mandatory
in eliciting LH surge on proestrus (Ramirez et al.,
1984), there is strong evidence that during the
critical period on proestrus the circulating proges-
terone concentration is intimately involved in the
neuroendocrine events associated with the preovu-
latory LH surge. Progesterone has been shown to
stimulate GnRH release from the ME of estrogen-
primed ovariectomized rats (Kim & Ramirez,
1982; Leadem & Yen, 1983). Injection of proges-
terone 2 days after estrogen priming reproduced a
proestrus-type rise in the MBH GnRH levels
before the LH surge (Kalra et al., 1973; Fink et
al., 1982) while estradiol treatment alone failed to
elicit similar increment in the ME GnRH levels
(Kalra, 1975, Fink et al., 1982). Therefore, it is
suggested that circulating levels of progesterone
between diestrus II and proestrus in rats, when
estradiol is dominant circulating ovarian steroid,
may be involved in eliciting the GnRH release.

Involvement of catecholamines in the modula-
tion of preovulatory LH surge

Modulation of preovulatory LH surge by
catecholamines has been studied almost exclusive-
ly in rats. However, even in this species, the
picture is not yet complete.

Rance et al. (1981a, 1981b) reported changes
in hypothalamic catecholamine metabolism dur-
ing the estrus cycle, concluding that significant
increase in NE activity and signficant decrease in
DA activity occur at the time of the LH surge on
the afternoon of proestrus in rats. Catecholamine
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receptors have been studied as a parameter involv-
ed in catecholamine transmission related to the
LH surge mechanism. It is reasonable to assume
that the active catecholamine molecules released
into synaptic cleft or extracellular spaces in ME
(Zamora & Ramirez, 1982) bind to specific rece-
ptors in postsynaptic hypothalamic structures or
in plasma membranes of axonal terminals in the
ME. Such binding would then be expected to
trigger intraneural events that stimulate or inhibit
GnRH release and ultimately modify LH secre-
tion from the pituitary.

Evidence supports that NE and epinephrine
(E) may be involved in distinct way to accumulate
GnRH in the MBH and its release into the hypo-
physial portal system during the critical period for
LH surge on proestrus (Kalra & Kalra, 1983).
Suppression of hypothalamic NE and E levels by
inhibiting dopamine-8-hydroxylase {DBH) activ-
ity by a number of drugs blocked the LH surge
(Kalra & McCann, 1974: Kalra, 1983) and that
induced by ovarian steroids (Kalra et al., 1972).
However, replenishment of NE levels in these rats
reversed the effects of DBH inhibitor on LH surge
(Kalra et al., 1972; Kalra & McCann, 1974).
Blockade of @-adrenergic receptors inhibited
preovulatory and steroid-induced LH surges
(Kalra et al., 1972; Kalra & McCann, 1974,
Clifton & Sawyer, 1979, 1980) perhaps by block-
ing @,-adrenergic receptors (Drouva et al., 1982).
However, the precise contribution of g¢-and 8-
receptors to the LH surge mechanism has not been
clearly determined, because no changes in num-
bers of these receptors have been detected in rat
brain during the estrus cycle (Wilkinson et al.,
1979a, 1979b) and too few studies have been done
on the regulation of hypothalamic ¢-and S-recep-
tor numbers by exogenous steroid treatments.
Intraventricular injections of NE or E on proest-
rus elicited LH release (Krieg & Sawyer, 1976;
Gallo & Drouva, 1979). Administration of NE
elicited GnRH release from the ME in vivo
(Krieg & Ching, 1982) and in vitro (Negro-
Vilar & Ojeda. 1978). Furthermore, there is gen-
eral agreement that several regions in the septal-
preoptic tuberal pathway innervated by NE neur-
ons display increased amine activity before and
during the LH surge on proestrus and the surge
induced by ovarian steroids (Crowley et al., 1978;
Rance et al., 1981). In species other than rats,
data on catecholamine modulation of LH surges
are quite scarce. In women, increases in serum NE
levels have been noticed during ovulation

(Badano et al., 1978). Pimozide and fusaric acid
are reported to inhibit midcycle LH release in
healthy women (Weiner & Ganong, 1978). It has
become evident that E may play a prominent role
in evoking GnRH release during the critical
period on proestrus in rats. A centrally active E
synthesis inhibitor, LY 78335 (2, 3-dichloro-
a-methylbenzylamine), administered before the
critical period on proestrus blocked the LH surge
and ovulation (Kalra, 1983). Aslo, there is evi-
dence of increased E turnover in the MBH in
association with the LH surge in rats (Adler et
al., 1983).

The mechanisms whereby augmented adrener-
gic transmission may facilitate the formation and
accumulation of GnRH in the median eminence-
arcuate nerve terminals before the LH surge have
not been clearly understood. Advis et al., (1983)
have proposed that GnRH increments may, in
part, be resulted from decrease in GnRH degrad-
ing enzymes in the ME. Interestingly, when GnRH
accumulation was blocked by suppression of
adrenergic neurotransmission (Simpkins ef al.,
1980), the decrease in GnRH degrading activity in
the ME was abolished (Advis er al., 1983).
Another possibility is that there is de novo synthe-
sis of GnRH in response to neurogenic stimuli on
proestrus or to progesterone in estrogen primed
ovariectomized rats (Kalra & Kalra, 1979; Simp-
kins et al., 1980; Wise et al., 1981). A few studies
have attempted to delineate the intraneuronal
sequence of events provoked by presumed release
of NE and E in assoication with the preovulatory
trigger of LH surge (Ojeda et al., 1979a; DePaolo
et al., 1982). Prostaglandin E, (PGE,) stimulates
LH release in steroid primed rats suggesting that
PGE, may participate in the preovulatory LH
release (Ojeda et al., 1979a). There is evidence
that estradiol stimulates PGE, release (Ojeda &
Campbell, 1982) and PGE, stimulates in vivo and
in vitro GnRH release (Gallardo & Ramirez,
1977; Ojeda et al., 1977). Furthermore, it has
been shown that NE evokes PGE, release from
ME by activating g-adrenergic receptors (Ojeda
et al., 1979b, 1982). PGE, synthesis rises to
highest levels during late proestrus in MBH
(Ojeda & Campbell, 1982). This finding suggests
that estradiol, which is known to play an obliga-
tory role in inducing preovulatory LH surge
(Goodman & Knobil, 1981), triggers the increased
synthesis of PGE,. DePaolo ef al., (1982) pos-
tulated that initially the preovulatory GnRH
hypersecretion from the ME nerve terminals may
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be due to augmented release of PGE, evolved by
NE and thereafter, as the LH surge progressed,
continued GnRH secretion may occur as a result
of enhanced responsiveness of GnRH nerve termi-
nals to PGE,.

SUMMARY

Two modalities of gonadotropin secretion,
pulsatile gonadotropin and preovulatory gonado-
tropin surge, have been identified in the mammals.

Pulsatile gonadotropin secretion is modulated
by the pulsatile pattern of GnRH release and
complex ovarian steroid feedback actions. The
neural mechansim that regulates the pulsatile
release of GnRH in the hypothalamus is called
“GnRH pulse generator”. Ovarian steroids,
estradiol and progesterone, appear to exert thier
feedback effects both directly on the pituitary to
modulate gonadotropin release and on a hypoth-
alamic site to modulate GnRH release; estradiol
primarily affects the amplitude while progesterone
decreases the frequency of the pulsatile GnRH.
Steroid hormones are known to affect cate-
cholamine transmission in brain. MBH-POA is
richly innervated by NE systems and close apposi-
tion of NE terminals and GnRH cell bodies
occurs in the MBH as well as in the POA. NE
normally facilitates pulsatile LH release by acting
through g@-receptor mechanism. However, precise
nature of facilitative role of NE transmission in
maintaining pulsatile LH has not been clearly
understood. Close apposition of DA and GnRH
terminals in ME might permit DA to influence
GnRH release. Action of DA transmission pro-
bably is mediated by axo-axonic contacts between
GnRH and DA fibers in the ME. Dopamine
transmission does not normally regulate pulsatile
LH release, but under certain conditions, in-
creased DA transmission inhibit LH pulse. En-
dogenous opioid acts to suppress the secretion of
GnRH into hypophysial portal circulation, there-
by inhibiting gonadotropin secretion. However,
an interaction between endogenenous opioid pe-
ptides and gonadotropin release is a complex one
which involves ovarian hormones as well. LH
secretion appears to be most suppressed by endo-
genenous opioids during the luteal phase, at a
time of elevated progesterone secretion. The ar-
cuate nucleus contains not only cell bodies for
GnRH and g-endorphin but also a dense aboriza-
tion of fibers suggesting that GnRH release is
changed by the interactions between GnRH and

B-endolphin cell bodies within the arcuate
nucleus.

The frequency and amplitude of pulsatile LH
release seem to be increased during the
preovulatory gonadotropin surge. Estradiol exerts
positive feedback action on the hypothalamo
-pituitary axis to trigger preovulatory LH surge.
GnRH is also crucial hormonal stimulus for
preovulatory LH surge. It is unlikely, however,
that increased secretion of GnRH during the
preovulatory gonadotropin surge represents an
obligatory neural signal for generation of the LH
discharge in primates including human. Modula-
tion of preovulatory LH surge by catecholamines
has been studied almost exclusively in rats. NE
and E may be involved in distinct way to accumu-
late GnRH in the MBH and its release into the
hypophysial portal system during the critical
period for LH surge on proestrus in rats. How-
ever, the mechanisms whereby augmented adre-
nergic transmission may facilitate the formation
and accumulation of GnRH in the ME-ARC
nerve terminals before the LH surge have not been
clearly understood.
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