• Title/Summary/Keyword: LET-R

Search Result 838, Processing Time 0.029 seconds

MINIMAL PROJECTIVE RESOLUTIONS OF A FINITELY GENERATED MODULE M OVER A NOETHERIAN LOCAL RING (R, 𝔪) AND THE COHOMOLOGIES OF (M, R/𝔪)

  • Lee, Sang Cheol;Song, Yeong Moo
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.355-366
    • /
    • 2018
  • Let R be a commutative ring with identity and let M be a finitely generated module over a Noetherian local ring R. Then it is well-known that M has a minimal projective resolution, which is unique up to isomorphisms of exact sequences. We provide a new proof of its uniqueness. Moreover, we deal with the cohomologies of (M, R/m).

DIRECT PROJECTIVE MODULES WITH THE SUMMAND SUM PROPERTY

  • Han, Chang-Woo;Choi, Su-Jeong
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.865-868
    • /
    • 1997
  • Let R be a ring with a unity and let M be a unitary left R-module. In this paper, we establish [5, Proposition 2.8] by showing the proof of it. Moreover, from the above result, we obtain some properties of direct projective modules which have the summand sum property.

  • PDF

FIXED POINTS ON NONCOMPACT AND NONCONVEX SETS

  • Bae, Jong-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.87-89
    • /
    • 1984
  • Let X be a Banach space, and let B(X) (resp. CB(X), K(X), CV(X)) denote the family of all nonvoid (resp. closed bounded, compact, convex) subsets of X. The Kuratowski measure of noncompactness is defined by the mapping .alpha.$_{k}$: B(X).rarw. $R_{+}$ with .alpha.$_{k}$(A) = inf {r>0 vertical bar A can be covered by a finite number of sets with diameter less than r}.an r}.

  • PDF

ON CERTAIN GRADED RINGS WITH MINIMAL MULTIPLICITY

  • Kim, Mee-Kyoung
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.887-893
    • /
    • 1996
  • Let (R,m) be a Cohen-Macaulay local ring with an infinite residue field and let $J = (a_1, \cdots, a_l)$ be a minimal reduction of an equimultiple ideal I of R. In this paper we shall prove that the following conditions are equivalent: (1) $I^2 = JI$. (2) $gr_I(R)/mgr_I(R)$ is Cohen-Macaulay with minimal multiplicity at its maximal homogeneous ideal N. (3) $N^2 = (a'_1, \cdots, a'_l)N$, where $a'_i$ denotes the images of $a_i$ in I/mI for $i = 1, \cdots, l$.

  • PDF

DEPENDENT SUBSETS OF EMBEDDED PROJECTIVE VARIETIES

  • Ballico, Edoardo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.865-872
    • /
    • 2020
  • Let X ⊂ ℙr be an integral and non-degenerate variety. Set n := dim(X). Let 𝜌(X)" be the maximal integer such that every zero-dimensional scheme Z ⊂ X smoothable in X is linearly independent. We prove that X is linearly normal if 𝜌(X)" ≥ 2⌈(r + 2)/2⌉ and that 𝜌(X)" < 2⌈(r + 1)/(n + 1)⌉, unless either n = r or X is a rational normal curve.

VOLUMES OF GEODESIC BALLS IN HEISENBERG GROUPS ℍ5

  • Kim, Hyeyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.349-363
    • /
    • 2019
  • Let ${\mathbb{H}}^5$ be the 5-dimensional Heisenberg group equipped with a left-invariant metric. In this paper we calculate the volumes of geodesic balls in ${\mathbb{H}}^5$. Let $B_e(R)$ be the geodesic ball with center e (the identity of ${\mathbb{H}}^5$) and radius R in ${\mathbb{H}}^5$. Then, the volume of $B_e(R)$ is given by $${\hfill{12}}Vol(B_e(R))\\{={\frac{4{\pi}^2}{6!}}{\left(p_1(R)+p_4(R){\sin}\;R+p_5(R){\cos}\;R+p_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^R}{\frac{{\sin}\;t}{t}}dt\right.}\\{\left.{\hfill{65}}{+q_4(R){\sin}(2R)+q_5(R){\cos}(2R)+q_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^{2R}}{\frac{{\sin}\;t}{t}}dt}\right)}$$ where $p_n$ and $q_n$ are polynomials with degree n.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.