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FIXED POINTS ON NONCOMPACT AND NONCONVEX SETS

JoNG Sook BAE

1. Introduction

Let X be a Banach space, and let B(X) (resp. CB(X), K(X), CV(X)) denote
the family of all nonvoid (resp. closed bounded, compact, convex) subsets of
X. The Kuratowski measure of noncompactness is defined by the mapping ax :
B(X) —» R, with ag(A) = inf{r>0}A can be covered by a finite number of sets
with diameter less than 7}. Then the following properties are valid (see [3,4]).

(M;) ax(A)=0 implies A=K (X).

(My) A€K(X) implies agx(A) =0.

(M3) ax(A)=ax(A) for all A=eB(X).

(My) ag(cod) =ax(A) for all AcB(X).

(M;) ACB implies ag(A) <ag(B) for all A, B&€B(X).

(Mg) ax(AUB)=max{ax(A), ax(B)} for all A, B€B(X).

Mp If A,e B(X), Am1CA,, nEN and ax(4,)—0 as n—rco,

then NA,#¢ and ag(NA4,)=0,

where A and co A denote the closure and the convex hull of A respectively.
It follows immediately that (My) implies (M;3) and (Mg) implies (Ms).

Also, the Eisenfeld~Lakshmikantham measure of nonconvexity is defined by
the mapping Pgr: B(X) —» Ry with Bp (A)=H(A, cod), where H is the
Hausdorff metric. Then the following properties hold (sec [2,6]).

(Cy) Bz (A)=0 implies AcCV(X).
(Cy) Ber(A)=pg1(A) for all AeB(X).
(C3) Brr: (CB(X), H)—R, is continuous.

We say that @ (resp. §): B(X) — Ry is a measure of noncompactness (resp.
nonconvexity) if a (resp. f8) satisfies some of (M) —(M;) (resp. (Cp) —{(Cs)).

The purpose of this paper is to give various fixed point theorems using the
measure of noncompactness and nonconvexity, which are generalizations of Darbo

[1], Eisenfeld-Lakshmikantham [2], Rus [6] and Sadovskii [7].

2. Fixed point theorems

Throughout this paper, let X be a Banach space and Y be a nonvoid closed
bounded subset of X. A function ¢ : R, — R, is called a comparison function if
¢ is increasing, ¢(0)=0 and ¢"(r) — 0 as n—co for each r&R,;. Let a (resp. B)
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be a measure of noncompactness (resp. nonconvexity).

A continuous mapping f : Y — Y is said to be a-condensing (resp. S-contractive)
if a(f(A))<a(4) (resp. B(f(A)) <S(A)) whenever a(A)>0 (resp. F(A)>0)
for all A€B(Y) such that f(A)CA. Also, f is said to be (a, )-contraction if
a(f(A)) <d(a(4)) for all AeB(Y) such that f(A)CA. In a similar way we
define a (B, ¢)-contraction. First we have the following theorem.

THEOREM 1. Suppose that Y is compact and § satisfies (C)). If a continuous
mapping f: Y — Y is f-contractive, then f has a fixed point.

Proof. Since Y is compact, Y.=Nf*(Y) is nonvoid and compact. It is easy
n=1

to see that f maps Y. onto Y.. Since f is B-contractive, S(Y.)=0. Therefore
the theorem follows from Schauder's fixed point theorem.
Using Theorem 1, we have the following generalization of [2] and [7].

THEOREM 2. Suppose that a satisfies (Mp), (Mp), (Ms) and (Mg), and B
satisfies (C). If a continuous mapping f:Y—Y is a-condensing and B-
contractive, then [ has a fixed point.

Proof. Let 4 be the family of all nonvoid closed subsets of Y which is
invariant under f and contains a fixed element y&Y. Then by Zorn’s lemma,
# has a minimal element A. Now we claim that @(A)=:0. Suppose that a(A)
>0. Let Ai=F(4A) U {y}. Then A;=d and A;CA, which shows that A,=A.
Since f is a-condensing, a(4)=a(A4)=max{a(f(4)), a(fn}=a(fA)<
a(A) by (Mz), (M) and (Mg), which is a contradiction. Therefore a(A) =0,
and A is compact by (M;). Therefore the result follows from Theorem 1.

Next, we have the following generalization of [1], [2] and [6].

THEOREM 3. Suppose a satisfies (My), (Ms) and (My), B satisfies (C,), and
¢ is a comparison function. If f: Y — Y is continuous, (a, ¢)-contraction and
B-contractive, then f has a fixed point.

Proof. Let Y1=£(Y) and Y,y= 7(Y,). Therefore f(Y,)CY, and a(¥,) <
¢*(@(Y)) — 0 as n—co. Thus by (My), Y.=NY,#¢ and a(Y..) =0. By (M),
Y. is compact, and the result follows from Theorem 1.

Finally, if X is reflexive or ¢oY is weakly compact, then we have the
following generalization of [2].

THEOREM 4. Suppose that « satisfies (M;), (Mp), (My) and (Ms), and f:

Y=Y is continuous, a-condensing and (Bgy, ¢)-contraction, where ¢ is a
comparison function. If co Y is weakly compact, then f has a Sized point.

Proof. Let Y;=7(Y), and Yan=f(Y,). Choose y,£Y,. Since ¢co Y is weakly
compact, we may assume that y, converges weakly to an element yX. Since
BeL(Yn) <¢"(Ber(Y)), d(y, Y,) <Br(Ys) — 0as n—oco. This shows that y& n
Y,=Y., and Bgr(Y.)=0. Therefore Y., is nonvoid closed and convex, which is
invariant under f, and the result follows from [5].
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