• 제목/요약/키워드: LET-R

검색결과 841건 처리시간 0.028초

MINIMAL PROJECTIVE RESOLUTIONS OF A FINITELY GENERATED MODULE M OVER A NOETHERIAN LOCAL RING (R, 𝔪) AND THE COHOMOLOGIES OF (M, R/𝔪)

  • Lee, Sang Cheol;Song, Yeong Moo
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.355-366
    • /
    • 2018
  • Let R be a commutative ring with identity and let M be a finitely generated module over a Noetherian local ring R. Then it is well-known that M has a minimal projective resolution, which is unique up to isomorphisms of exact sequences. We provide a new proof of its uniqueness. Moreover, we deal with the cohomologies of (M, R/m).

DIRECT PROJECTIVE MODULES WITH THE SUMMAND SUM PROPERTY

  • Han, Chang-Woo;Choi, Su-Jeong
    • 대한수학회논문집
    • /
    • 제12권4호
    • /
    • pp.865-868
    • /
    • 1997
  • Let R be a ring with a unity and let M be a unitary left R-module. In this paper, we establish [5, Proposition 2.8] by showing the proof of it. Moreover, from the above result, we obtain some properties of direct projective modules which have the summand sum property.

  • PDF

FIXED POINTS ON NONCOMPACT AND NONCONVEX SETS

  • Bae, Jong-Sook
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.87-89
    • /
    • 1984
  • Let X be a Banach space, and let B(X) (resp. CB(X), K(X), CV(X)) denote the family of all nonvoid (resp. closed bounded, compact, convex) subsets of X. The Kuratowski measure of noncompactness is defined by the mapping .alpha.$_{k}$: B(X).rarw. $R_{+}$ with .alpha.$_{k}$(A) = inf {r>0 vertical bar A can be covered by a finite number of sets with diameter less than r}.an r}.

  • PDF

ON CERTAIN GRADED RINGS WITH MINIMAL MULTIPLICITY

  • Kim, Mee-Kyoung
    • 대한수학회논문집
    • /
    • 제11권4호
    • /
    • pp.887-893
    • /
    • 1996
  • Let (R,m) be a Cohen-Macaulay local ring with an infinite residue field and let $J = (a_1, \cdots, a_l)$ be a minimal reduction of an equimultiple ideal I of R. In this paper we shall prove that the following conditions are equivalent: (1) $I^2 = JI$. (2) $gr_I(R)/mgr_I(R)$ is Cohen-Macaulay with minimal multiplicity at its maximal homogeneous ideal N. (3) $N^2 = (a'_1, \cdots, a'_l)N$, where $a'_i$ denotes the images of $a_i$ in I/mI for $i = 1, \cdots, l$.

  • PDF

DEPENDENT SUBSETS OF EMBEDDED PROJECTIVE VARIETIES

  • Ballico, Edoardo
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.865-872
    • /
    • 2020
  • Let X ⊂ ℙr be an integral and non-degenerate variety. Set n := dim(X). Let 𝜌(X)" be the maximal integer such that every zero-dimensional scheme Z ⊂ X smoothable in X is linearly independent. We prove that X is linearly normal if 𝜌(X)" ≥ 2⌈(r + 2)/2⌉ and that 𝜌(X)" < 2⌈(r + 1)/(n + 1)⌉, unless either n = r or X is a rational normal curve.

VOLUMES OF GEODESIC BALLS IN HEISENBERG GROUPS ℍ5

  • Kim, Hyeyeon
    • 충청수학회지
    • /
    • 제32권3호
    • /
    • pp.349-363
    • /
    • 2019
  • Let ${\mathbb{H}}^5$ be the 5-dimensional Heisenberg group equipped with a left-invariant metric. In this paper we calculate the volumes of geodesic balls in ${\mathbb{H}}^5$. Let $B_e(R)$ be the geodesic ball with center e (the identity of ${\mathbb{H}}^5$) and radius R in ${\mathbb{H}}^5$. Then, the volume of $B_e(R)$ is given by $${\hfill{12}}Vol(B_e(R))\\{={\frac{4{\pi}^2}{6!}}{\left(p_1(R)+p_4(R){\sin}\;R+p_5(R){\cos}\;R+p_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^R}{\frac{{\sin}\;t}{t}}dt\right.}\\{\left.{\hfill{65}}{+q_4(R){\sin}(2R)+q_5(R){\cos}(2R)+q_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^{2R}}{\frac{{\sin}\;t}{t}}dt}\right)}$$ where $p_n$ and $q_n$ are polynomials with degree n.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.