• Title/Summary/Keyword: LDH assay

Search Result 244, Processing Time 0.036 seconds

Protective Effect of Prunella spica Extracts against H2O2-Induced Cytotoxicity in PC12 Cells (Hydrogen peroxide가 유도하는 세포독성으로부터 PC12 세포를 보호하는 하고초(Prunella spica) 추출물의 영향)

  • Kim, Hyun-Jung;Lee, Jeung-Min;Moon, Seong-Hee;Park, Hae-Ryong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1121-1126
    • /
    • 2010
  • The oxidative stress induced by reactive oxygen species (ROS) may play an important role in the pathogenesis of neurodegenerative diseases. In this study, we investigated the neuroprotective effects of methanolic extracts of Prunella Spica (PSE) against $H_2O_2$-induced oxidative stress in PC12 cells. The cells exposed to $H_2O_2$-induced oxidative stress were treated with various concentrations of PSE; this treatment resulted in the induction of a dose-dependent protective effect, which was evidenced by the results of MTT reduction assay, lactate dehydrogenase (LDH) release assay, morphological assay, and colony-formation assay. Interestingly, we also observed reduction of apoptotic bodies in the Hoechst staining and flow cytometric analysis. These data show that apoptosis was significantly suppressed in the PC12 cells that were exposed to $H_2O_2$-induced oxidative stress and treated with PSE. These results suggest that Prunella Spica could be a new potential protective agent against $H_2O_2$-induced oxidative stress.

Effect of Kaempferol on the Cytotoxicity Induced Oxygen Free Radicals in Skin Fibroblast Derived from Human In Vitro

  • Lee, Jai-Kyoo;Ha, Dae-Ho
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • In order to evaluate on the effect of kaempferol on the cytotoxicity of oxygen tree radicals, XTT assay was performed to determine the cell viability after skin fibroblasts derived from human (Detroit 51) that were treated with various concentrations of hydrogen peroxide $(H_2O_2)$. And also, the effect of kaempferol on the cytotoxicity induced by H202 that was examined by cell viability, lactate dehydrogenase (LDH) activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in these cultures. $H_2O_2$ decreased cell viability in dose-dependent manner in these cultures and the $XTT_{90}\;and\;XTT_{50}$ values were determined at concentration of $35{\mu}M\;and\;90{\mu}M$ of $H_2O_2$ after skin fibroblasts derived from human were treated with $15{\sim}90{\mu}M$ of $H_2O_2$ for 6 hours, respectively. $H_2O_2$ was highly toxic on cultured skin fibroblasts derived from human by toxic criteria of Brenfreund and Puerner (1984). In the protective effect of kaempferol on $H_2O_2$-induced cytotoxicity, kaempferol increased DPPH radical scavenging activity and significantly decreased LDH activity. From these results, it is suggested that oxygen tree radical, $H_2O_2$, was highly toxic on cultured skin fibroblasts derived from human, and also kaempferol of flavonoid showed the protection on $H_2O_2$-induced cytotoxicity.

  • PDF

Exploring Structure-Activity Relationships for the In vitro Cytotoxicity of Alkylphenols (APs) toward HeLa Cell

  • Kim, Myung-Gil;Shin, Hye-Seoung;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2009
  • In vitro cytotoxicity of 23 alkyl phenols (APs) on human cervical cancer cell lines (HeLa) was determined using the lactate dehydrogenase (LDH) cytotoxicity assay. Two different sets of descriptors were used to construct the calibration model based on Genetic Algorithm-Multiple Linear Regression (GA-MLR) based on the experimental data. A statistically robust Structure-Activity Relationships (QSAR) model was achieved ($R^2$=95.05%, $Q^2_{LOO}$=91.23%, F=72.02 and SE= 0.046) using three Dragon descriptors based on Me (0D-Constitutional descriptor), BELp8 (2D-Burden eigenvalue descriptor) and HATS8p (3D-GETAWAY descriptor). However, external validation could not fully prove its validity of the selected QSAR in characterization of the cytotoxicity of APs towards HeLa cells. Nevertheless, the cytotoxicity profiles showed a finding that 4-n-octylphenol (4-NOP), 4-tert-octyl-phenol (4-TOP), 4-n-nonylphenol (4-NNP) had a more potent cytotoxic effect than other APs tested, inferring that increased length and molecular bulkiness of the substituent had important influence on the LDH cytotoxicity.

Construction of a Bile-responsive Expression System in Lactobacillus plantarum

  • Chae, Jong Pyo;Pajarillo, Edward Alain;Hwang, In-Chan;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • This study aimed to develop a bile-responsive expression system for lactobacilli. The promoters of four genes, encoding phosphoenolpyruvate-dependent sugar phosphotransferase (mannose-specific), L-lactate dehydrogenase (LDH), HPr kinase, and D-alanine-D-alanine ligase, respectively, which were highly expressed by bile addition in Lactobacillus johnsonii PF01, were chosen. Each promoter was amplified by polymerase chain reaction and fused upstream of the ${\beta}$-glucuronidase gene as a reporter, respectively. Then, these constructs were cloned into E. coli-Lactobacillus shuttle vector pULP2, which was generated by the fusion of pUC19 with the L. plantarum plasmid pLP27. Finally, the constructed vectors were introduced into L. plantarum for a promoter activity assay. The LDH promoter showed the highest activity and its activity increased 1.8-fold by bile addition. The constructed vector maintained in L. plantarum until 80 generations without selection pressure. A bile-responsive expression vector, $pULP3-P_{LDH}$, for Lactobacillus spp. can be an effective tool for the bile-inducible expression of bioactive proteins in intestine after intake in the form of fermented dairy foods.

Homeopathic mother tincture of Conium initiates reactive oxygen species mediated DNA damage and makes HeLa cells prone to apoptosis

  • Bishayee, Kausik;Mukherjee, Avinaba;Paul, Avijit;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.2 no.3
    • /
    • pp.26.1-26.5
    • /
    • 2012
  • Adverse side-effects and lack of scientific validation of some chemotherapeutic agents prevent the use of many traditional medicines claimed to have anti-cancer effects. Ethanolic extract of Conium maculatum has long been used in traditional and alternative systems of medicine including homeopathy for the treatment of glandular enlargements, cancerous tumours or hard lumps of testicles, prostate, ovaries, breasts and/ or uterus, particularly in the breast. However, if and how it acts still remains scientifically unknown. This study aims to test if Conium extract (CE), used as mother tincture of Conium in homeopathy, has demonstrable anti-cancer potentials without having much cytotoxicity in normal cells. Cytotoxicity of the drug was tested by conducting MTT assay on both normal (peripheral blood mononuclear cells) and HeLa cells. We also evaluated DNA fragmentation and DNA damage by DAPI and diphenylamine assay. The LDH activity assay was done to evaluate the percentages of apoptosis and necrosis. ROS accumulation also was evaluated to pin-point the actual events of apoptosis. Administration of drug clearly demonstrated its anti-cancer potentials as evidenced by the DNA damage analysis. The ROS activity also increased in case of the CE treated cells. LDH data revealed that the mode of cell death was mainly apoptotic and not necrotic. CE appears to induce apoptosis of cancer cells through ROS mediated pathway, and has negligible cytotoxicity against normal cells.

Protective Effect of PineXol® on Hydrogen Peroxide-induced Apoptosis on SK-N-MC Cells and Focal Ischemia Rodent Models (파인엑솔이 과산화수소로 유도된 SK-N-MC 세포와 뇌졸중 백서 모델에서의 보호효과)

  • Hong, Soon-O;Han, Kyung-Hoon;Lee, Seung-Hee;Kim, Doh-Hee;Song, Kwan-Young;Han, Sung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.923-929
    • /
    • 2016
  • The purpose of this study was to evaluate the protective effect of $PineXol^{(R)}$ on $H_2O_2$-induced cell death in SK-N-MC cells, and in early stage focal ischemia rodent model. SK-N-MC cells were pre-treated with $200{\mu}M$ $H_2O_2$ or various concentrations of $PineXol^{(R)}$ (10, 30, and 50 pg/mL) for 24 h, and then exposed to $H_2O_2$ for 3 h. Cell death was assessed by the CCK-8 assay, reactive oxygen species (ROS) assay, and lactate and dehydrogenase (LDH) release assay. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) expressions were also analyzed by western blotting. Focal ischemia rodent model was used as the in vivo model, and different concentrations of $PineXol^{(R)}$ (1, 10, and 100 mg/kg) were administered. One week after administration, reduction of infarct volume was analyzed by TTC staining. Cell viability of $H_2O_2$-treated SK-N-MC cells significantly increased by pre-treatment of $PineXol^{(R)}$ (p<0.05). $PineXol^{(R)}$ pre-treatment also induced significant decrease of ROS and LDH expressions. However, $PineXol^{(R)}$ did not affect the infarct volume. These results suggest that $PineXol^{(R)}$ has significant neuroprotective effect in vitro, but statistical significance was not confirmed in the in vivo focal ischemia model.

The Effect of Neodymium Oxide on the Generation of Reactive Oxygen Species and DNA Oxidative Damage by Intratracheal Instillation (산화네오디뮴 기도투여에 따른 폐내 활성산소종 발생 및 DNA의 산화적 손상)

  • Kim, Jong-Kyu;Kim, Soo-Jin;Kang, Min-Gu;Song, Se-Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.336-344
    • /
    • 2014
  • Objectives: This study was performed to assay the effect of neodymium oxide on the generation of reactive oxygen species and DNA oxidative damage by intratracheal instillation. Methods: Two groups of rats were exposed to neodymium oxide($Nd_2O_3$) via intratracheal instillation with doses of 0.5 mg and 2.0 mg, respectively. At two days and at 12 weeks after exposure, the contents of neodymium oxide in the lung, liver, kidney, heart and brain, leukocyte, olive tail moment, ROS, RNS, lactate dehydrogenase, albumin, cytokine and MDA from BALF were measured. Results: Neodymium oxide contents in the liver, kidney, heart, and brain were detected at less than $1{\mu}g/g$ tissue concentration. However, in the lungs at four weeks the highest amount were detected and then found to be drastically reduced at 12 weeks. ROS and RNS in bronchoalveolar lavage increased in concentration dependently at two days, four weeks and 12 weeks after neodymium oxide instillation. However, ROS and RNS decreased with the passage of time. At two days the total number of WBC in BALF in the high concentration group was significantly increased, and at four weeks the total number of WBC were significantly increased in the low and high concentration groups(p<0.01). At two days after exposure, the LDH of the low and high concentration groups was significantly increased. At 12 weeks, only the LDH of the high concentration group was significantly increased compared to in the control group(p<0.01). As a result of Comet assay, after two days, damage to the DNA of the low and high concentration groups was observed. Conclusions: Intratracheal instillation of neodymium oxide induces the generation of ROS and DNA damage in rats.

Antioxidant Effects of Eriodictyol on Hydrogen Peroxide-Induced Oxidative Stress in HepG2 Cells (산화스트레스가 유도된 HepG2 세포에서 Eriodictyol의 항산화 효과)

  • Joo, Tae-Woo;Hong, Sung-Hyun;Park, Sun-Young;Kim, Gur-Yoo;Jhoo, Jin-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.510-517
    • /
    • 2016
  • This study was conducted to investigate the antioxidant and hepatoprotective effects of eriodictyol compound against hydrogen peroxide-induced oxidative stress in HepG2 cells by measuring expression levels of antioxidant enzymes, liver function index enzyme activities, and inhibitory effects against reactive oxygen species (ROS) production. HepG2 cell viability was assessed using 3-(4,5-dimethyl thiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the concentration range of $10{\sim}50{\mu}g/mL$, eriodictyol displayed over 98% cell viability in HepG2 cells. The effects of increased gene expression on hydrogen peroxide-induced oxidative stress were analyzed by monitoring antioxidant enzyme (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx) gene expression levels using real-time PCR. Eriodictyol compound significantly increased gene expression levels of SOD, CAT, and GPx in a dose-dependent manner ($10{\sim}50{\mu}g/mL$). Hepatoprotective effects against hydrogen peroxide-induced oxidative stress were analyzed by monitoring glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), and gamma-glutamyl transferase (GGT) activities in HepG2 cell culture medium using a biochemistry analyzer. Eriodictyol compound significantly reduced GOT, LDH, and GGT activities in a dose-dependent manner in HepG2 cells. ROS level in HepG2 cells was analyzed by 2',7'-dichlorofluorescein fluorescence diacetate assay, and eriodictyol compound effectively reduced the intracellular ROS level in HepG2 cells. The results reveal that eriodictyol compound can be useful for development of effective antioxidant and hepatoprotective agents.

Effects of Sophorae Radix Extract in Rat Cardiac Endothelial Cells (고삼 추출물이 배양 심장내피세포에 미치는 영향)

  • Kwon Kang Beom;Park Cheon Su;Kim In Gyu;Kim Hyun Gyu;Choi Ki Bang;Kim Yong Bok;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.220-224
    • /
    • 2003
  • To test the protective effect of Sophorae Radix (SR) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen tree radical, Neutral Red (NR), lactate dyhydrogenase (LDH), and c-fos immunopositive cells assay were used in the presence of SR extract. The results of these experiments were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as a decrease in viability, and increases in LDH activity and c-fos immunopositive cells. Cardiac endothelial cells pretreated with SR extract protected the increase of LDH activity. Alos, cardiac endothelial cells pretreated with SR extract inhibited the increase of c-fos immunopositive cells. These results show that XO/HX induces toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that SR extract is very effective in the prevention of XO/HX-induced toxicity.

Protective Effect of NMDA Receptor Antagonist on the Neurotoxicity Induced by Lead as an Environmental Pollutant (환경오염원인 납의 신경독성에 대한 NMDA 수용체 길항제의 보호 효과)

  • Kim, Young-Wo;Rim, Yo-Sup;Seo, Young Mi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • Objectives: This study was performed to evaluate the neurototoxicity of the environmental pollutant lead acetate(LA) and the protective effect of the D-2-amino-5-phosphonovaleric acid(APV), N-methyl-D-aspartate(NMDA) receptor antagonist on LA-induced cytotoxicity in cultured C6 glioma cells. Materials and Methods: For this study, cell viability in cultured C6 glioma cells was assessed by XTT assay and antioxidative effect, such as lactate dehydrogenase(LDH) activity, by LDH detection kit. Results: LA significantly decreased cell viability in a dose-dependent manner, and the XTT50 value was determined to be 33.3 uM of LA. The cytotoxicity of LA was deemed highly toxic according to Borenfreund and Puerner's toxic criteria. The vitamin E antioxidant significantly increased cell viability damaged by LA-induced cytotoxicity in these cultures. For the protective effect of APV on LA-induced cytotoxicity, APV significantly increased not only cell viability, but also inhibition of LDH activity. From these results, it is suggested that oxidative stress is involved in the neurotoxicity of LA, and APV effectively protected against LA-induced cytotoxicity via an antioxidative effect as an inhibotory activity of LDH. Conclusions: Natural resources like APV may be putative therapeutic agents for the toxic diminution of environmental pollutants such as LA correlated with oxidative stress.