Browse > Article
http://dx.doi.org/10.5851/kosfa.2018.e58

Construction of a Bile-responsive Expression System in Lactobacillus plantarum  

Chae, Jong Pyo (Department of Animal Resources Science, Dankook University)
Pajarillo, Edward Alain (Department of Animal Resources Science, Dankook University)
Hwang, In-Chan (Department of Animal Resources Science, Dankook University)
Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
Publication Information
Food Science of Animal Resources / v.39, no.1, 2019 , pp. 13-22 More about this Journal
Abstract
This study aimed to develop a bile-responsive expression system for lactobacilli. The promoters of four genes, encoding phosphoenolpyruvate-dependent sugar phosphotransferase (mannose-specific), L-lactate dehydrogenase (LDH), HPr kinase, and D-alanine-D-alanine ligase, respectively, which were highly expressed by bile addition in Lactobacillus johnsonii PF01, were chosen. Each promoter was amplified by polymerase chain reaction and fused upstream of the ${\beta}$-glucuronidase gene as a reporter, respectively. Then, these constructs were cloned into E. coli-Lactobacillus shuttle vector pULP2, which was generated by the fusion of pUC19 with the L. plantarum plasmid pLP27. Finally, the constructed vectors were introduced into L. plantarum for a promoter activity assay. The LDH promoter showed the highest activity and its activity increased 1.8-fold by bile addition. The constructed vector maintained in L. plantarum until 80 generations without selection pressure. A bile-responsive expression vector, $pULP3-P_{LDH}$, for Lactobacillus spp. can be an effective tool for the bile-inducible expression of bioactive proteins in intestine after intake in the form of fermented dairy foods.
Keywords
bile-responsive; expression; Lactobacillus; plasmid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang B, Li J, Li Q, Zhang H, Li N. 2009. Isolation of adhesive strains and evaluation of the colonization and immune response by Lactobacillus plantarum L2 in the rat gastrointestinal tract. Int J Food Microbiol 132:59-66.   DOI
2 Yuki N, Watanabe K, Mike A, Tagami Y, Tanaka R, Ohwaki M, Morotomi M. 1999. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: Selective isolation from faeces and identification using monoclonal antibodies. Int J Food Microbiol 48:51-57.   DOI
3 Zhai Z, Hao Y, Yin S, Luan C, Zhang L, Zhao L, Chen D, Wang O, Luo Y. 2009. Characterization of a novel rolling-circle replication plasmid pYSI8 from Lactobacillus sakei YSI8. Plasmid 62:30-34.   DOI
4 Alcantara C, Zuniga M. 2012. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. Microbiology 158:1206-1218.   DOI
5 Axelsson L, Lindstad G, Naterstad K. 2003. Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37:115-120.   DOI
6 Benbouziane B, Ribelles P, Aubry C, Martin R, Kharrat P, Riazi A, Langella P, Bermudez-Humaran LG. 2013. Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol 168:120-129.   DOI
7 Bermudez-Humaran LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P. 2013. Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278-283.   DOI
8 Bohmer N, Konig S, Fischer L. 2013. A novel manganese starvation-inducible expression system for Lactobacillus plantarum. FEMS Microbiol Lett 342:37-44.   DOI
9 Chen MJ, Tang HY, Chiang ML. 2017. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol 66:20-27.   DOI
10 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.   DOI
11 del Solar G, Acebo P, Espinosa M. 1995. Replication control of plasmid pLS1: Efficient regulation of plasmid copy number is exerted by the combined action of two plasmid components, CopG and RNA II. Mol Microbiol 18:913-924.   DOI
12 Duong T, Miller MJ, Barrangou R, Azcarate-Peril MA, Klaenhammer TR. 2011. Construction of vectors for inducible and constitutive gene expression in Lactobacillus. Microb Biotechnol 4:357-367.   DOI
13 Gomis-Ruth FX, Sola M, Acebo P, Parraga A, Guasch A, Eritja R, Gonzalez A, Espinosa M, de Solar G, Coll M. 1998. The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J 17:7404-7415.   DOI
14 Hamon E, Horvatovich P, Bisch M, Bringel F, Marchioni E, Aoude-Werner D, Ennahar S. 2012. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. J Proteome Res 11:109-118.   DOI
15 Herbel SR, Vahjen W, Wieler LH, Guenther S. 2013. Timely approaches to identify probiotic species of the genus Lactobacillus. Gut Pathog 5:27.   DOI
16 Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728-764.   DOI
17 Hernandez-Arriaga AM, Rubio-Lepe TS, Espinosa M, del Solar G. 2009. Repressor CopG prevents access of RNA polymerase to promoter and actively dissociates open complexes. Nucleic Acids Res 37:4799-4811.   DOI
18 Horn N, Fernandez A, Dodd HM, Gasson MJ, Rodriguez JM. 2003. Nisin-controlled production of pediocin PA-1 and colicin V in nisin- and non-nisin-producing Lactococcus lactis strains. Appl Environ Microbiol 70:5030-5032.   DOI
19 Kim KW, Franceschi VR, Davin LB, Lewis NG. 2006. Beta-glucuronidase as reporter gene: Advantages and limitations. Methods Mol Biol 323:263-273.
20 Kim YH, Han KS, Oh S, You S, Kim SH. 2005. Optimization of technical conditions for the transformation of Lactobacillus acidophilus strains by electroporation. J Appl Microbiol 99:167-174.   DOI
21 Lee JY, Pajarillo EA, Kim MJ, Chae JP, Kang DK. 2013. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. J Proteome Res 12:432-443.   DOI
22 Pajarillo EA, Kim SH, Lee JY, Valeriano VD, Kang DK. 2015. Quantitative proteogenomics and the reconstruction of the metabolic pathway in Lactobacillus mucosae LM1. Korean J Food Sci An 35:692-702.   DOI
23 Loera-Arias MJ, Villatoro-Hernandez J, Parga-Castillo MA, Salcido-Montenegro A, Barboza-Quintana O, Munoz-Maldonado GE, Montes-de-Oca-Luna R, Saucedo-Cardenas O. 2014. Secretion of biologically active human interleukin 22 (IL-22) by Lactococcus lactis. Biotechnol Lett 36:2489-2494.   DOI
24 Maidin MS, Song AA, Jalilsood T, Sieo CC, Yusoff K, Rahim RA. 2014. Construction of a novel inducible expression vector for Lactococcus lactis M4 and Lactobacillus plantarum Pa21. Plasmid 74:32-38.   DOI
25 Mandal H, Jariwala R, Bagchi T. 2016. Isolation and characterization of lactobacilli from human faeces and indigenous fermented foods for their potential application as probiotics. Can J Microbiol 62:349-359.   DOI
26 Perez-Arellano I, Perez-Martinez G. 2003. Optimization of the green fluorescent protein (GFP) expression from a lactose-inducible promoter in Lactobacillus casei. FEMS Microbiol Lett 222:123-127.   DOI
27 Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York, USA.
28 Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR. 2007. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624-4634.   DOI
29 Platteeuw C, Simons G, de Vos WM. 1994. Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl Environ Microbiol 60:587-593.   DOI
30 Ruiz L, Alvarez-Martin P, Mayo B, de los Reyes-Gavilan CG, Gueimonde M, Margolles A. 2012. Controlled gene expression in bifidobacteria by use of a bile-responsive element. Appl Environ Microbiol 78:581-585.   DOI
31 Sorvig E, Gronqvist S, Naterstad K, Mathiesen G, Eijsink VGH, Axelsson L. 2003. Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiol Lett 229:119-126.   DOI
32 Taranto MP, Perez-Martinez G, de Valdez GF. 2006. Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol 157:720-725.   DOI
33 Valeriano VD, Balolong MP, Kang DK. 2017. Probiotic roles of Lactobacillus sp. in swine: Insights from gut microbiota. J Appl Microbiol 122:554-567.   DOI
34 van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M. 2005. Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223-1230.   DOI
35 Walker DC, Klaenhammer TR. 1994. Isolation of a novel IS3 group insertion element and construction of an integration vector for Lactobacillus spp. J Bacteriol 176:5330-5340.   DOI