• Title/Summary/Keyword: LCC변수

Search Result 15, Processing Time 0.024 seconds

Analysis of Life Cycle Costs of Railway Track : A Case Study for Ballasted and Concrete Track for High-Speed Railway (철도 궤도의 수명주기비용 분석 : 고속철도 자갈궤도와 콘크리트궤도 사례 연구)

  • Jang, Seung Yup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.110-121
    • /
    • 2016
  • In the decision-making, such as selection of structure, construction method, or time and scheme of maintenance, the evaluation of life-cycle cost(LCC) is of great importance. The maintenance cost occupy a large portion of the LCC of the railway track as well as the initial construction cost. Futhermore, the proportion of the maintenance cost is much higher in the ballasted track. Thus, the importance of the LCC evaluation is higher than in any other engineering structures. In this study, a LCC model that can consider various design parameters such as the type of track structure, annual traffic volume, axle load, train speed, and proportion of curve sections and engineering structures has been developed. Fundamental data for calculating costs also have been presented. Based on the model and data proposed, the trends in the variation of LCC according to the design parameters were examined and the most important design parameters in the LCC analysis of railway track were investigated. The results show that the proportion of renewal and operational costs is much higher in the ballasted track than in the concrete track, and the annual traffic volume and ballast taming period are most significant factors on the LCC of the ballasted track. On the contrary, it is revealed that the proportion of the initial construction costs in the concrete track is much higher, and the LCC of the concrete track is less sensitive to the traffic volume, train speed, and axle load.

A Study on the Selection of a Bridge Structure Type Using DEA and LCC (DEA기법과 LCC개념을 활용한 교량형식 선정 방법에 관한 연구)

  • Han, Sam-Heui;Kim, Jong-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.101-111
    • /
    • 2013
  • In this study, DEA (Data Envelopment Analysis) was carried out on the four bridges, which have the same extension (L=1,615m), in order to select the most superior, economical method of construction using the LCC concept of each bridge structure in the case of the Ulsan-Pohang double track railway which is scheduled to be constructed. DEA models were analyzed with the CCR model, which was designed for the evaluation of relative efficiency of each model. The initial construction costs, maintenance costs, indirect costs (user costs + indirect loss of social costs), and life cycle costs were used as input variables, and average duration was applied as the output variable. LCC was applied to calculate the input variables, and to get the costs of LCC, 100 years of period and 4.83% of real discount rate were applied, and the costs are classified into initial construction, maintenance, user, and indirect loss of social cost. The analysis results showed that the Method 2 and 3 were evaluated as the most efficient, and the other alternatives were evaluated as the following order; Method 1, the default, and Method 4.

A Study on the Development of Life Cycle Cost Database in Building (건축물의 LCC Database 구축에 관한 연구)

  • Jeon Chan-Min;Woo Kyung-Hun;Kim Joong-Hun;Kim Kyung-UP;Park Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.537-540
    • /
    • 2003
  • The importance of LCC analysis has been enlarged. Also, it would be necessary to computerize LCC analysis for accurate and logical analysis of LCC. In other papers, they showed LCC analysis model but the study of database development which could be applied in LCC analysis have been undeveloped. As a result, the final goal of this study is to develope LCC database. And this progress is devided 4 steps as design, construction, maintenance and disposal and derived the detailed cost item in the progresses. Futhermore, it would be possible to develope cost DB, fluent DB, general DB, building section DB, material DB and to propose database which would be applied in accurate and logical analysis of LCC.

  • PDF

Application of Real Option based Life Cycle Cost Analysis for Reflecting Operational Flexibility in Solar Heating Systems (실물옵션 기반의 LCC분석을 통한 태양열난방시스템의 운영유연성 반영 방안)

  • Choi, Ju-Yeong;Kim, Hyeong-Bin;Son, Myung-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.70-79
    • /
    • 2015
  • With the rise of the interest in a renewable system, the importance of the Life Cycle Cost Analysis(LCCA), an economic evaluation tool, has been increasing. However, there is an inevitable gap between a real cost and an estimation from LCCA because of the uncertainty of the external environment in real world. As the input variables in an analysis, such as a real discount rate and an energy cost, ares subject to change as time goes by, strategic decision on the current operating system is made depending on the real cost. Current economic evaluation approaches have treated only the fluctuation of input variables without consideration of the flexibility in operation, which has consequently led to the impairment on the reliability of LCCA. Therefore, new approach needs to be proposed to consider both the uncertainty of input variables and operational flexibility. To address this issue, the application of the Real Option to LCCA is presented in this study. Through a case analysis of LCCA of a solar heating system, the limits and current status of LCCA are identified. As a result, quantitative presentation of strategic decisions has been added in the new approach to implement the traditional approach.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Economics analysis for life cycle cost design of bridges (LCC를 고려한 교량의 경제성 분석)

  • Shin, Yung-Seok;Pack, Jang-Ho;Ahn, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.162-165
    • /
    • 2010
  • 합리적인 교량 대안선정을 위해서는 설계 시 경제성, 경관성, 안전성 및 기능성, 유지관리 용이성, 시공성 등 다양한 속성을 고려하여야 한다. 이 중 경제성은 초기비용뿐만 아니라 공용수명에 걸쳐 발생하는 유지관리비용, 보수 보강비용, 해체 폐기비용 등의 합인 총 생애주기비용에 대해 최소의 비용으로 최상의 가치를 창출하도록 하여야 한다. 본 연구에서는 건설계획과정에서 대표적으로 고려될 수 있는 대안으로 세 가지 교량 형식(강상자형교, 소수주형교, PSC-I형 거더교)을 대상구조물로 선정하고 교량의 공용수명은 상태등급곡선으로부터 추정한 내하율 곡선을 사용하여 산정하였다. LCC최적설계를 위해 설계변수, 제약조건, 목적함수를 구성하였고, 총 생애주기비용을 공용수명으로 나눈 연간생애주기비용을 사용하여 하여 합리적인 교량의 경제성 분석을 수행하였다.

  • PDF

Life Cycle Cost & Reliability Analysis of Quaywall Design Parameters (안벽 설계변수의 신뢰성 해석과 생애주기비용 분석)

  • Kim, Hong-Yeon;Yoon, Gil-Lim;Yoon, Yeo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.508-518
    • /
    • 2008
  • Reliability and sensitivity analysis of the design parameters for a section of caisson type quaywall which is the most applicable in Korea were performed. It was tried to estimate probabilities of failure for the system of the multiple failure modes and to analyze LCC in the quaywall structure. The reliability analysis was performed by FORM. Also, sensitivity indices were estimated using the reliability indices, which may be used inferring effects of each design parameter on the reliability indices. As a result, the coefficient of friction between caisson and rubble, the moment by self weight and the moment of resistance mostly affected on the reliability indices in the sliding, overturning and foundation failure, respectively. System reliability theorem was applied in order to estimate the probabilities of failure for the system of the multiple failure modes. As the results of estimation of the probabilities of failure for the system, all cases were more conservative than those for the elements, according to both failure mode and load combination applied to series system. It entirely exceeded the target reliability index, but it was consistent with the theorem. According to the optimum LCC with the width of the caisson, the probability of failure exceeded the target probability of failure at then time. Therefore, it was judged to be insufficient to the practical application.

  • PDF

Analysis and Estimation of Food and Beverage Sales at Incheon Int'l Airport by ARIMA-Intervention Time Series Model (ARIMA-Intervention 시계열 모형을 이용한 인천국제공항 식음료 매출 분석 및 추정 연구)

  • Yoon, Han-Young;Park, Sung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.458-468
    • /
    • 2019
  • This research attempted to estimate monthly sales of food and beverage at the passenger terminal of Incheon int'l airport from June of 2015 to December 2020. This paper used ARIMA-Intervention model which can estimate the change of the sales amount suggesting the predicted monthly food and beverage sales revenue. The intervention variable was travel-ban policy against south Korea from P.R. China since July 2016 to December 2017 due to THAAD in south Korea. According to ARIMA, it was found normal predicted sales amount showed the slow growth increase rate until 2020 due to the effect of intervened variable. However, the monthly food sales in July and August 2019 was 20.3 and 21.2 billion KRW respectively. Each amount would increase even more in 2020 and the amount would increase to 21.4 and 22.1 billion KRW. The sales amount in 2019 would be 7.7 and 8.1 billion KRW and climb up 7.9 and 8.2 billion KRW in 2020. It was expected LCC passengers tend to spend more money for F&B at airport due to no meal or drink service of LCC or the paid-in meal and beverage service of LCC. The growth of sales of food and beverate will be accompanied with the growth of LCC according to estimated data.

A Study on the Correlation between Optimal Safety of Structures and Minimization of Life Cycle Cost(LCC) (구조물의 최적안전지수와 생애주기비용의 상관관계에 관한 연구)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.94-98
    • /
    • 2014
  • This study was intend to develop the optimal design method of suspension bridge by the reliability analysis based on minimization of life cycle cost(LCC). The reliability analysis was performed considering aleatory uncertainties included in the result of numerical analysis. The optimal design was estimated based on life-cycle cost analysis depending on the result of reliability analysis. As the effect of epistemic uncertainty, the safety index (beta), failure probability (pf) and minimum life cycle cost were random variables. The high-level distributions were generated, from which the critical percentile values were obtained for a conservative bridge design through sensitivity assessment.