DOI QR코드

DOI QR Code

A Study on the Correlation between Optimal Safety of Structures and Minimization of Life Cycle Cost(LCC)

구조물의 최적안전지수와 생애주기비용의 상관관계에 관한 연구

  • Bang, Myung-Seok (Department of Transportation System Engineering, Korea National University of Transportation)
  • 방명석 (한국교통대학교 교통시스템공학과)
  • Received : 2014.09.02
  • Accepted : 2014.11.26
  • Published : 2014.12.31

Abstract

This study was intend to develop the optimal design method of suspension bridge by the reliability analysis based on minimization of life cycle cost(LCC). The reliability analysis was performed considering aleatory uncertainties included in the result of numerical analysis. The optimal design was estimated based on life-cycle cost analysis depending on the result of reliability analysis. As the effect of epistemic uncertainty, the safety index (beta), failure probability (pf) and minimum life cycle cost were random variables. The high-level distributions were generated, from which the critical percentile values were obtained for a conservative bridge design through sensitivity assessment.

본 연구는 구조물의 최적안전수준과 수명기간동안 투자되는 총비용과의 상관관계를 연구하였다. 설계, 건설 및 공용 중 투자되는 총비용을 최소화하면서 최적의 안전수준을 결정하기 위하여 신뢰성해석을 수행하였다. 신뢰성해석에는 설계인자들의 불확실성과 설계 및 공사, 유지관리를 수행하는 인간의 오류 등 인적 불확실성을 확률변수로 고려하였다. 이러한 확률해석을 통한 안전지수와 생애주기비용의 상관관계를 연구하고, 생애주기비용의 분산도에 따른 안전지수의 민감도해석을 통하여 최적의 안전수준을 결정하였다. 해석결과는 이러한 평가방법이 교통시설물에 투자되는 비용을 최소화하면서 최적의 안전수준을 결정할 수 있는 정확하고 유용한 방법임을 보여주었다.

Keywords

References

  1. C. A. Cornell, "A Probability-Based Structural Code", J. of ACI, Vol. 66, No. 12, 1969.
  2. A. H-S. Ang and W. H. Tang, "Probability Concepts in Engineering", John Wiley & Sons, Inc. 2007.
  3. S. H. Han and J. K. Park, "Practical Valuations on the Effect of Two Type Uncertainties for Optimal Design of Cable-stayed Bridges", Int. J. of Steel Structures IJOSS, Vol. 9, No. 2, pp. 143-152, 2009. https://doi.org/10.1007/BF03249489
  4. M. Liu, Y. K. Wen and S. A. Burns, "Life Cycle Cost Oriented Seismic Design Optimization of Steel Moment Frame Structures with Risk-taking Preference". Engineering Structure, Vol. 26, No. 10, pp. 1407-1421, 2004. https://doi.org/10.1016/j.engstruct.2004.05.015
  5. K. M. Lee, H. N. Cho and C. J. Cha, "Life-cycle Cost-effective Optimum Design of Steel Bridges Considering Environmental Stress", Engineering Structure, Vol. 28, No. 9, pp. 1252-1265, 2006. https://doi.org/10.1016/j.engstruct.2005.12.008
  6. S. H. Han and A.H-S. Ang, "Optimal Design of Cable-stayed Bridges Based on Minimum Life-cycle Cost", IABMAS08 Conference, Seoul, Korea, 2008.
  7. S. H. Han and M. S. Bang, "Probabilistic Optimal Safety Valuation Based on Stochastic Finite Element Analysis of Steel Cable-stayed Bridges", Smart Structures and Systems; An International Journal, Techno-Press, Vol. 10, No. 2, pp. 89-110, 2012. https://doi.org/10.12989/sss.2012.10.2.089
  8. M. S. Bang, "A Study on Design and Construction Method for Long Span Bridges", Report ID KICT/95-SE-111-64, 1995.
  9. M. S. Bang, "The Safe Erection Method of Suspension Bridges by Construction Sequence Analysis", J. of The Korean Society of Safety, Vol. 22, No. 6, pp. 55-62, 2007.
  10. M. S. Bang, "Decision Method on Target Safety Level in Suspension Bridges by Minimization of LCC", J. of The Korean Society of Safety, Vol. 24, No. 2, pp. 62-68, 2009.
  11. A. S. Nowak and K. R. Collins, "Reliability of Structures", McGraw-Hill, New York, 2000.
  12. AH-S Ang and D, De Leon, "Modelling and Analysis of Uncertainties for Risk-informed Decisions in Infrastructure Engineering", Vol. 1, Issue. 1, pp. 19-31, 2005.