• Title/Summary/Keyword: LC-NMR-MS

Search Result 93, Processing Time 0.029 seconds

Mithramycin Inhibits Etoposide Resistance in Glucose-deprived HT-29 Human Colon Carcinoma Cells

  • Lee, Eun-Mi;Park, Hae-Ryong;Hwang, Ji-Hwan;Park, Dong-Jin;Chang, Kyu-Seob;Kim, Chang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1856-1861
    • /
    • 2007
  • Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase $II{\alpha}$, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.

Metabolism and Excretion Study of DW116, A New Fluoroquinolone, in Rats

  • Jung, Byung-Hwa;Park, Young-Han;Park, Jongsei;Chung, Bong-Chul
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.358-362
    • /
    • 1997
  • Metabolite identification and urinary and biliary excretion of the new fluoroquinolone antibacterial agent DW116 [1-(5-fluoro-2-pyridyl)-6-fluoro-7-(4-methyl-1 -piperazinyl)-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid, hydrochloride] after oral administration have been studied in Sprague-Dawley rats. The excretion kinetics were monoexponential. Most of the drug was eliminated via the hepatic and renal routes. Mean renal clearance of DW116 was 73.4 ml/hr/kg and mean biliary clearance was 83.8 ml/hr/kg. The major metabolite excreted in the bile was identified as the glucuronide ester of the parent drug using base-hydrolysis of the conjugate metabolite followed by co-HPLC with standard compound, $^{19}$ F-NMR and LC-MS methods. The glucuronide conjugate was also found in urine. The mean urinary recoveries of free and total (free plus glucuronide ester) DW116 were $28.6{\pm}2.7% $and $36.4{\pm}1.8%$ of the administered dose and the corresponding biliary recoveries were $14.4{\pm} 5.5%$ and $37.0{\pm}7.6%$, respectively.

  • PDF

2'-Hydroxylation of Genistein Enhanced Antioxidant and Antiproliferative Activities in MCF-7 Human Breast Cancer Cells

  • Choi, Jung-Nam;Kim, Doc-Kyu;Choi, Hyung-Kyoon;Yoo, Kyung-Mi;Kim, Ji-Young;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1348-1354
    • /
    • 2009
  • Bioconversion of the isoflavonoid genistein to 2'-hydroxygenistein (2'-HG) was performed using isoflavone 2'-hydroxylase (CYP81E1) heterologously expressed in yeast. A monohydroxylated product was analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and NMR spectrometry and was identified as 2'-HG. An initial bioconversion rate of 6% was increased up to 14% under optimized conditions. After recovery, the biological activity of 2'-HG was evaluated. Bioconverted 2'-HG showed higher antioxidant activity against 1,1-diphenyl-2-picryl hydrazine (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals than did genistein. Furthermore, 2'-HG exhibited greater antiproliferative effects in MCF-7 human breast cancer cells than did genistein. These results suggest that 2'-hydroxylation of genistein enhanced its antioxidant activity and cell cytotoxicity in MCF-7 human breast cancer cells.

Phytochemical Constituents from the Rhizomes of Osmunda japonica Thunb and Their Anti-oxidant Activity

  • Woo, Kyeong wan;Jung, Ja Kyun;Lee, Hyun Joo;Kim, Tae Muk;Kim, Min Suk;Jung, Ho Kyung;An, Byeongkwan;Ham, Seong Ho;Jeon, Byung Hun;Cho, Hyun Woo
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.217-221
    • /
    • 2017
  • Eleven compounds (1-11) were isolated from the rhizomes of Osmunda japonica, and their structures were elucidated based on $^1H$, $^{13}C-NMR$ and LC-IT-TOF MS data. Of these compounds, all compounds (1 - 11) have been previously reported, although five (6 - 9, 11) have not previously been isolated from this plant. The antioxidant activities of isolated compounds (1 - 11) were measured by DPPH and ABTS assays, and compound 10 showed the high antioxidant activity.

Melanogenesis Inhibitory Activity of Epicatechin-3-O-Gallate Isolated from Polygonum amphibium L.

  • Lee, Young Kyung;Hwang, Buyng Su;Hwang, Yong;Lee, Seung Young;Oh, Young Taek;Kim, Chul Hwan;Nam, Hyeon Ju;Jeong, Yong Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • This study aimed to investigate the melanogenesis inhibitory activity of epicatechin-3-O-gallate (ECG) isolated from Polygonum amphibium L. ECG was isolated from the ethanol extract of P. amphibium L, and its chemical structure was determined using spectroscopic methods such as LC-ESI-MS, 1D-NMR, and UV spectroscopy. ECG inhibited the melanogenesis of B16F10 cells in a dose-dependent manner. Particularly, it decreased the melanin content by 27.4% at 200 µM concentration, compared with the control, in B16F10 cells, without causing cytotoxicity. It is noteworthy that the expression of three key proteins, including tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), involved in melanogenesis, is significantly inhibited by ECG. The ECG isolated in this study caused the inhibition of body pigmentation and tyrosinase activity in vivo in the zebrafish model. These results suggest that the ECG isolated from P. amphibium L. is an effective anti-melanogenesis agent.

Lessons from the Sea : Genome Sequence of an Algicidal Marine Bacterium Hahella chehuensis (적조 살상 해양 미생물 Hahella chejuensis의 유전체 구조)

  • Jeong Hae-Young;Yoon Sung-Ho;Lee Hong-Kum;Oh Tae-Kwang;Kim Ji-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Harmful algal blooms (HABs or red tides), caused by uncontrolled proliferation of marine phytoplankton, impose a severe environmental problem and occasionally threaten even public health. We sequenced the genome of an EPS-producing marine bacterium Hahella chejuensis that produces a red pigment with the lytic activity against red-tide dinoflagellates at parts per billion level. H. chejuensis is the first sequenced species among algicidal bacteria as well as in the order Oceanospirillales. Sequence analysis indicated a distant relationship to the Pseudomonas group. Its 7.2-megabase genome encodes basic metabolic functions and a large number of proteins involved in regulation or transport. One of the prominent features of the H. chejuensis genome is a multitude of genes of functional equivalence or of possible foreign origin. A significant proportion (${\sim}23%$) of the genome appears to be of foreign origin, i.e. genomic islands, which encode genes for biosynthesis of exopolysaccharides, toxins, polyketides or non-ribosomal peptides, iron utilization, motility, type III protein secretion and pigment production. Molecular structure of the algicidal pigment was determined to be prodigiosin by LC-ESI-MS/MS and NMR analyses. The genomics-based research on H. chejuensis opens a new possibility for controlling algal blooms by exploiting biotic interactions in the natural environment and provides a model in marine bioprospecting through genome research.

Phytochemical constituents of Coix lachryma-jobi var. ma-yuen roots and their tyrosinase inhibitory activity (율무근의 식물화학적 성분 연구 및 Tyrosinase 저해 활성)

  • Choi, Yun-Hyeok;Choi, Chun Whan;Lee, Jae Yeon;Ahn, Eun-Kyung;Oh, Joa Sub;Hong, Seong Su
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In the course of screening tyrosinase inhibitory activity, EtOAc-soluble fraction of Coix lachryma-jobi var. mayuen Stapf. (Gramineae) roots showed significant inhibition. Further fractionation of the EtOAc-soluble fraction resulted in six compounds, which were identified as (+)-icariol $A_2$ (1), zhepiresionol (2), 4-hydroxybenzaldehyde (3), trans-${\rho}$-coumaric acid (4), N-(2-hydroxy-4-methoxyphenyl)-2-hydroxyacetamide (5), and coixol (6). The chemical structures of these compounds were identified on the basis of spectroscopic methods (MS, 1D and 2D NMR) and comparison with literature values. Compound 1 was first reported from this plant. Also, this is the first time that the isolation of compound 5 has been reported from nature source. Among the isolated compounds, compounds 4 and 6 showed enzyme inhibitory activity, with $IC_{50}$ values of 6.5 and $62.4{\mu}M$, respectively, in comparison with these of positive control, arbutin.

Antimelanogenic Effect and Whitening of Anthocyanin Rich Fraction from Seeds of Liriope platyphylla (맥문동 종실 안토시아닌 분획물의 멜라닌 생성 억제 및 미백 효과)

  • Choung, Myoung Gun;Hwang, Young Sun;Kim, Gi Ppeum;Ahn, Kyung Geun;Shim, Hoon Seob;Hong, Seung Beom;Choi, Jae Hoo;Yu, Chang Yeon;Chung, Ill Min;Kim, Seung Hyun;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.361-371
    • /
    • 2013
  • This study was performed to determine the antimelanogenic effect and tyrosinase inhibitory activities of anthocyanin rich fraction (AN-SLP) from Liriope platyphylla Wang et Tang seeds. Anthocyanins isolated from L. platyphylla seeds revealed the presence of four major anthocyanin components, which were tentatively identified as delphinidin-3-Oglucoside, delphinidin-3-O-rutinoside, petunidin-3-O-rutinoside, and malvidin-3-O-rutinoside using semipreparative HPLC, $^1H$-NMR, $^{13}C$ NMR, FAB-MS and LC/ES-MS. The inhibitory effect of AN-SLP on tyrosinase activity was studied using in vitro (against mushroom tyrosinase) and ex vivo (against B16 melanoma cell tyrosinase) models. Cellular tyrosinase activity was decreased by AN-SLP treatment in B 16 melanoma cells through dose dependent manner, but AN-SLP did not inhibit mushroom tyrosinase and L-DOPA oxidation directly. AN-SLP showed melanin inhibition by 53.2% at 50 ${\mu}g/m{\ell}$ which was 0.7 times more efficient than the antimelanogenic effect of commercial arbutin and kojic acid (36.5%) also did not show cell toxicity. Additionally, AN-SLP inhibited the activity of ${\alpha}$-glucosidase and the glycosylation of tyrosinase in melanoma cell. The resulting unsaturated glycosylation of tyrosinase makes it unstable and disturb correct transportation. From theses results, we conclude that AN-SLP could be used as anti-melanogenic agent for skin whitening.

Isolation and Purification of Garlic Specific Organic Compounds (마늘 특이 유기화합물의 분리 및 정제)

  • Oh, Tae-Young;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.553-557
    • /
    • 2011
  • Garlic specific organic compounds were separated and purified using a recycling preparative high-performance liquid chromatography (HPLC) from blanched garlic cloves. Identification of the compounds involved comparing the previously reported HPLC retention times as well as other identification methods including $^1H$- and $^{13}C$-nuclear magnetic resonance and liquid chromatography-mass spectrometry. The yields of garlic specific organic compounds were 12.2, 42.5, 1.6, 1.2, and 4.8% on wet weight basis of garlic for alliin(S-allyl-L-cysteine sulfoxide), isoalliin(S-1-propenyl-L-cysteine sulfoxide), ${\gamma}$-glutamyl-S-allylcysteine, ${\gamma}$-glutamyl-S-1-propenylcysteine and ${\gamma}$-glutamyl-phenylalanine, respectively. All the compounds, except for ${\gamma}$-glutamylphenylalanine, contained sulfur.

Thiazinogeldanamycin, a New Geldanamycin Derivative Produced by Streptomyces hygroscopicus 17997

  • Ni, Siyang;Wu, Linzhuan;Wang, Hongyuan;Gan, Maoluo;Wang, Yucheng;He, Weiqing;Wang, Yiguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.599-603
    • /
    • 2011
  • A new geldanamycin (GDM) derivative was discovered and isolated from the fermentation broth of Streptomyces hygroscopicus 17997. Its chemical structure was elucidated as thiazinogeldanamycin by LC-MS, sulfur analysis, and NMR. The addition of cysteine to the fermentation medium significantly stimulated the production level of thiazinogeldanamycin, suggesting cysteine as a precursor of thiazinogeldanamycin production. Although showing a decreased cytotoxicity against HepG2 cancer cells, thiazinogeldanamycin exhibited an improved water solubility and photostability. Thiazinogeldanamycin may represent the first natural GDM derivative characterized so far that uses GDM as its precursor. Its appearance also clearly indicates that an appropriate end-point of fermentation is of critical importance for the maximal production of GDM by Streptomyces hygroscopicus 17997.