Melanogenesis Inhibitory Activity of Epicatechin-3-O-Gallate Isolated from Polygonum amphibium L.

  • Lee, Young Kyung (Nakdonggang National Institute of Biological Resources) ;
  • Hwang, Buyng Su (Nakdonggang National Institute of Biological Resources) ;
  • Hwang, Yong (Nakdonggang National Institute of Biological Resources) ;
  • Lee, Seung Young (Nakdonggang National Institute of Biological Resources) ;
  • Oh, Young Taek (Nakdonggang National Institute of Biological Resources) ;
  • Kim, Chul Hwan (Nakdonggang National Institute of Biological Resources) ;
  • Nam, Hyeon Ju (Nakdonggang National Institute of Biological Resources) ;
  • Jeong, Yong Tae (Nakdonggang National Institute of Biological Resources)
  • Received : 2020.10.21
  • Accepted : 2020.11.28
  • Published : 2021.03.28


This study aimed to investigate the melanogenesis inhibitory activity of epicatechin-3-O-gallate (ECG) isolated from Polygonum amphibium L. ECG was isolated from the ethanol extract of P. amphibium L, and its chemical structure was determined using spectroscopic methods such as LC-ESI-MS, 1D-NMR, and UV spectroscopy. ECG inhibited the melanogenesis of B16F10 cells in a dose-dependent manner. Particularly, it decreased the melanin content by 27.4% at 200 µM concentration, compared with the control, in B16F10 cells, without causing cytotoxicity. It is noteworthy that the expression of three key proteins, including tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), involved in melanogenesis, is significantly inhibited by ECG. The ECG isolated in this study caused the inhibition of body pigmentation and tyrosinase activity in vivo in the zebrafish model. These results suggest that the ECG isolated from P. amphibium L. is an effective anti-melanogenesis agent.



This work was supported by a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NNI-BR202002101).


  1. Yaqian G, Bhandari GS, Park JH, Park CW. 2013. A systematic study of the Polygonum amphibium L. complex (Polygonaceae) based on chloroplast DNA sequences. Korean J. Pl. Taxon. 43: 34-45.
  2. Smolarz HD, Surdacka A, Rolinski J. 2003. Influence of ethyl acetate extract and quercetin-3-methyl ether from Polygonum amphibium on activation lymphocytes from peripheral blood of healthy donor in vitro. Phytother. Res. PTR. 17: 744-747.
  3. Smolarz HD, Budzianowski J, Bogucka-Kocka A, Kocki J, Mendyk E. 2008. Flavonoid glucuronides with anti-leukaemic activity from Polygonum amphibium L. Phytochem. Anal : PCA 19: 506-513.
  4. Kwon SH, Na HR, Jung JD, Baek NI, Park SK, Choi HK. 2012. A comparison of radical scavenging activity and cyanobacteria growth inhibition of aquatic vascular plants. Korean J. Ecol. Environ. 45: 11-20.
  5. Hwang BS, Lee SY, Kang CH, Han W, Oh YT, Yu SM, et al. 2019. Whitening activities of ethanol extract from Polygonum amphibium L. Microbiol. Biotechnol. Lett. 42: 195-200.
  6. Yun JW, Seo JA, Jeong YS, Bae IH, Jang WH, Lee J, et al. 2011. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J. Dermatol. Sci. 62: 8-15.
  7. Tsatmali M, Ancans J, Thody AJ. 2002. Melanocyte function and its control by melanocortin peptides. J. Histochem. Cytochem. 50: 125-133.
  8. Briganti S, Camera E, Picardo M. 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16: 101-110.
  9. Akiu S, Suzuki Y, Asahara T, Fujinuma Y, Fukuda M. 1991. [Inhibitory effect of arbutin on melanogenesis--biochemical study using cultured B16 melanoma cells]. Nihon Hifuka Gakkai zasshi. Japanese J. Dermatol. 101: 609-613.
  10. Fujimoto N, Watanabe H, Nakatani T, Roy G, Ito A. 1998. Induction of thyroid tumours in (C57BL/6N x C3H/N)F1 mice by oral administration of kojic acid. Food Chem. Toxicol. 36: 697-703.
  11. Hermanns JF, Pierard-Franchimont C, Pierard GE. 2000. Skin colour assessment in safety testing of cosmetics. An overview. Int. J. Cosmet. Sci. 22: 67-71.
  12. Davis AL, Cai Y, Davies AP, Lewis JR. 1996. 1H and 13C NMR assignments of some green tea polyphenols. Magn. Reson. Chem. 34: 887-890.<887::AID-OMR995>3.0.CO;2-U
  13. Hosoi J, Abe E, Suda T, Kuroki T. 1985. Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45: 1474-1478.
  14. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253-310.
  15. Westerfield M. 1993. The zebrafish book : a guide for the laboratory use of zebrafish (Brachydanio rerio), pp. 385. Ed. 4. Ed. M. Westerfield, Eugene, OR.
  16. Choi TY, Kim JH, Ko DH, Kim CH, Hwang JS, Ahn S, et al. 2007. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Res. 20: 120-127.
  17. Kim YJ, Uyama H. 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 62: 1707-1723.
  18. Costin GE, Hearing VJ. 2007. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21: 976-994.
  19. Yoon HS, Lee SR, Ko HC, Choi SY, Park JG, Kim JK, et al. 2007. Involvement of extracellular signal-regulated kinase in nobiletininduced melanogenesis in murine B16/F10 melanoma cells. Biosci. Biotechnol. Biochem. 71: 1781-1784.
  20. Kim SS, Kim MJ, Choi YH, Kim BK, Kim KS, Park KJ, et al. 2013. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac. J. Ttrop. Biomed. 3: 617-622; discussion 621-612.
  21. Tuerxuntayi A, Liu YQ, Tulake A, Kabas M, Eblimit A, Aisa HA. 2014. Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC Complement. Altern. Med. 14: 166.
  22. Zhang X, Li J, Li Y, Liu Z, Lin Y, Huang JA. 2020. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells. Fitoterapia 145: 104634.
  23. Lall N, Kishore N, Momtaz S, Hussein A, Naidoo S, Nqephe M, et al. 2015. extract from Ceratonia siliqua exhibits depigmentation properties. Phytother. Res. 29: 1729-1736.
  24. Fujimaki T, Mori S, Horikawa M, Fukui Y. 2018. Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro. Food Chem. 248: 61-69.
  25. Kim EH, Kim JE, Park SN. 2009. Antioxidative and antiaging effects of Persicaria hydropiper L. extracts. J. Soc. Cosmet. Sci. Korea 35: 293-300.
  26. Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. 2012. Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 33: 128-132.
  27. Stanley KA, Curtis LR, Simonich SL, Tanguay RL. 2009. Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Aquat. Toxicol. 95: 355-361.
  28. O'Reilly-Pol T, Johnson SL. 2008. Neocuproine ablates melanocytes in adult zebrafish. Zebrafish 5: 257-264.
  29. Lajis AFB. 2018. A zebrafish embryo as an animal model for the treatment of hyperpigmentation in cosmetic dermatology medicine. Medicina 54: 35.