• Title/Summary/Keyword: LBA4404

Search Result 92, Processing Time 0.021 seconds

Resistance Characteristics of Flue-cured Tobacco Plants Transformed with CDNA of Potato Virus Y Replicase Gene (감자 바이러스 Y 복제유전자 cDNA로 형질전환된 황색종 담배의 저항성 특성)

  • 박은경;백경희;유진삼;조혜선;강신웅;김영호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • A flue-cured tobacco variety (Nicotiana tabacum cv. Wisconsin) was used for Plant transformation with the complementary DNA (cDNA) of potato virus Y-necrosis strain (PVY-VN) replicase gone (Nb) which was synthesized through reverse-transcription Primed with oligo(dT) and Polymerization using RNase H-digested template. The cDNA was cloned into Plant expression vector Plasmid (PMBP2), and introduced into tobacco plants by co-culturing tobacco leaf disks with Agrobacterium tumefaciens LBA4404 containing the plasmid before Plant regeneration. Eight Plants, in which the inserted cDNA fragment was detected by Polymerase chain reaction (PCR), out of 70 putative transformants inserted with sense-oriented Mb cDNA showed no symptom at 3 weeks after inoculation, while the other 62 plants, and all plants with vector gone only and antisense-oriented NIb cDNA had susceptible vein-necrosis symptoms. However, only 2 of the 8 resistant plants were highly resistant, which remained symptomless up to 10 weeks after inoculation. Among the first progenies (T1) from self-fertilized seeds of the two resistant transgenic plants, less than 10 % of 71 plants appeared highly resistant (with no symptom), 70% moderately resistant (with mild symptoms on 1 - 2 leaves), and about 20% susceptible (with susceptible symptoms on 3 or more leaves) at 3 weeks after inoculation. These results suggest that the PVY resistance was inherited in the 71 generation. Key words : potato virus Y. viral replicase gene, transgenic tobacco Plants, resistance.

  • PDF

Molecular and Cytogenetic Analysis of Transgenic Plants of Rice(Oryza sativa L.) Produced by Agrobacterium-mediated Transformation

  • Cho, Joon-Hyeong;Kim, Yong-Wook
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2004
  • To demonstrate the importance of transformation efficiency in independent event, molecular and cytogenetic analysis were conducted with genomic DNA and chromosome of transgenic plants produced by Agrobacterium tumefeciens LBA4404 (pSBM-PPGN: gusA and bar). Selection ratios of putative transgenic calli were similar in independent experiments, however, transformation efficiencies were critically influenced by the type of regeneration media. MSRK5SS-Pr regeneration mediun, which contains 5 mgL$^{-1}$ kinetin, 2% (w/v) sucrose in combination with 3% (w/v) sorbitol, and 500 mgL$^{-1}$ proline, was efficient to produce transgenic plant of rice from putative transgenic callus in the presence of L-phosphinotricin (PPT). With MSRK5SS-Pr medium, transformation efficincies of Nagdongbyeo were significantly enhanced from 3.7% to 6.3% in independent callus lines arid from 7.3% to 19.7% in plants produced, respectively. Stable integration and expression of bar gene were confirmed by basta herbicide assay, PCR amplification and Southern blotting of bar gene, and fluorescence in situ hybridization (FISH) analysis using pSBM-PPGN as a probe. In Southern blot analysis, diverse band patterns were observed in total 44 transgenic plants regenerated from 20 independent PPT resistant calli showing from one to five copies of T-DNA segments, however, the transformants obtained from one callus line showed the same copy numbers with the same fractionized band patterns.

  • PDF

Transformation of Populus nigra × P. maximowiczii Using Agrobacterium tumefaciens vectors (Agrobacterium tumefaciens vector를 이용(利用)한 양황철의 형질전환(形質轉換))

  • Son, Suk Gyu;Hyu, Jung Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.2
    • /
    • pp.164-172
    • /
    • 1998
  • This study was conducted to find the optimum transformation condition using Agrobacterium harboring promoterless GUS gene. The optimal medium for shoot induction from leaves of Populus nigra${\times}$P. maximowiczii was MS medium supplemented with $0.1mg/{\ell}$ NAA, $0.5mg/{\ell}$ BAP(94% regeneration frequency and 11.5 average number of shoot) According to the test using pBI121, the concentration of antibiotics for selection marker gene was $100mg/{\ell}$ kanamycin or $60mg/{\ell}$ geneticin in the SIM(shoot inducing medium) 3. Two weeks later, callus was induced in the SIM 3 and this callus grew up to 0.5-1cm shoots after 6 weeks in the new SIM 3. And the treatment with methylation inhibitor(5-azacytidine) led to a dramatic increase in foreign gene expression rate from 5.7% to 26.7%. The vector systems showed. different transformation efficiencies based on the fluorometric and histochemical GUS assay. In this study the vector systems used for transformation seemed to affect transformation frequency, in which pEHA101 yielded more transformants(35.9%) than LBA4404/pBI121 did(5.7%). This result indicated that pEHA101 was effective to insert the promoterless foreign gene into a poplar genome.

  • PDF

Production of Transgenic Melon from the Cultures of Cotyledonary-Node Explant Using Agrobacterium-Mediated Transformation (Agrobacterium 공동 배양을 통한 자엽절 절편 배양으로부터 멜론 형질전환체 생산)

  • Cho Mi-Ae;Song Yun-Mi;Park Yun-Ok;Ko Suck-Min;Min Sung-Ran;Liu Jang-Ryol;Lee Jun-Haeng;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.257-262
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic melon. Cotyledonary-node explants of melon (Cucumis melo L. cv. Super VIP) were co-cultivated with Agrobacterium strains (LBA4404, GV3101, EHA101) containing the binary vector (pPTN289) carrying with CaMV 35S promoter-gus gene as reporter gene and NOS promoter-bar gene conferring resistance to glufosinate (herbicide Basta) as selective agent, and the binary vector (pPTN290) carrying with Ubiquitin promoter-GUS gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent, respectively. The maximum transformation efficiency (0.12%) was only obtained from the cotyledonary-node explants co-cultivated with EHA101 strain (pPTN289) on selection medium with 5 mg/L glufosinate and not produced a transgenic melon from the cotyledon or cotyledonary-node co-cultivated with other strains. Finally, five plants transformed showed the resistance in glufosinate antibiotic and the GUS positive response in leaf ($T_0$), flower ($T_0$), seeds ($T_1$) and plantlet ($T_1$). Southern blot analysis revealed that the gus gene integrated into each genome of transgenic melon.

Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis

  • Aileni, Mahender;Abbagani, Sadanandam;Zhang, Peng
    • Plant Biotechnology Reports
    • /
    • v.5 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with ${\beta}$-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with $1mg\;l^{-1}$ indole-3-butyric acid and $15mg\;l^{-1}$ hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for ${\beta}$-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of $3.9{\pm}0.39$ transgenic plantlets per explant was achieved in the present transformation system. It took only 2-3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.

Development of Transgenic Tall Fescue Plants from Mature Seed-derived Callus via Agrobacterium-mediated Transformation

  • Lee, Sang-Hoon;Lee, Dong-Gi;Woo, Hyun-Sook;Lee, Byung-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1390-1394
    • /
    • 2004
  • We have achieved efficient transformation system for forage-type tall fescue plants by Agrobacterium tumefaciens. Mature seed-derived embryogenic calli were infected and co-cultivated with each of three A. tumefaciens strains, all of which harbored a standard binary vector pIG121Hm encoding the neomycin phosphotransferase II (NPTII), hygromycin phosphotransferase (HPT) and intron-containing $\beta$-glucuronidase (intron-GUS) genes in the T-DNA region. Transformation efficiency was influenced by the A. tumefaciens strain, addition of the phenolic compound acetosyringone and duration of vacuum treatment. Of the three A. tumefaciens strains tested, EHA101/pIG121Hm was found to be most effective followed by GV3101/pIG121Hm and LBA4404/pIG121Hm for transient GUS expression after 3 days co-cultivation. Inclusion of 100 $\mu$M acetosyringone in both the inoculation and co-cultivation media lead to an improvement in transient GUS expression observed in targeted calli. Vacuum treatment during infection of calli with A. tumefaciens strains increased transformation efficiency. The highest stable transformation efficiency of transgenic plants was obtained when mature seed-derived calli infected with A. tumefaciens EHA101/pIG121Hm in the presence of 100 $\mu$M acetosyringone and vacuum treatment for 30 min. Southern blot analysis indicated integration of the transgene into the genome of tall fescue. The transformation system developed in this study would be useful for Agrobacterium-mediated genetic transformation of tall fescue plants with genes of agronomic importance.

Expression of the Green Fluorescent Protein (GFP) in Tobacco Containing Low Nicotine for the Development of Edible Vaccine

  • Kim Young-Sook;Kim Mi-Young;Kang Tae-Jin;Kwon Tae-Ho;Jang Yong-Suk;Yang Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • This study was carried out to obtain basic information for gene manipulation in potent edible tobacco (Nicotiana tabacum cv. TI 516). N. tabacum cv. TI 516 is a plant for a possible candidate to use as an edible vaccine, since it contains a low level of nicotine. The effective plant regeneration system through leaf disc culture was achieved using a MS basal medium supplemented with 0.1 mg $1^{-1}$ NAA and 0.5 mg $1^{-1}$ BA. In order to transform the N. tabacum cv. TI 516 with the green fluorescent protein (GFP) gene, Agrobacterium tumefaciens LBA 4404 containing the GFP gene was used. Genomic PCR confirmed the integration of the GFP gene into nuclear genome of transgenic plants. Expression of the GFP gene was identified in callus, apical meristem and root tissue of transgenic N. tabacum cv. TI 516 plants using fluorescence microscopy. Western blot analysis revealed the expression of GFP protein in the transgenic edible tobacco plants. The amount of GFP protein detected in the transgenic tobacco plants was approximately 0.16% of the total soluble plant protein (TSP), which was determined by ELISA.

Transformation of Maize Controlling Element Ac and Ds into Armoracia rusticana via, Agrobacterium tumefaciens (Agrobacterium tumefaciens를 매개로 한 옥수수 유동유전자 Ac 및 Ds에 의한 서양고추냉이 (Armoracia rusticana)의 형질전환)

  • 배창휴;노일섭;임용표;민경수;김동철;김학진;이효연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.319-326
    • /
    • 1994
  • For the gene tagging of Armoracia rusticana, maize controlling element Ac and Ds were introduced into A.rusticana via Agrobacterium-mediated transformation method. We established an efficient in via regeneration and transformation system for gene transfer in A. rusticana. The optimum in via regeneration condition has been obtained from leaf, petiole and root organs on modified MS medium supplemented with NAA 0.1 mg/L plus BA 1.0 mg/L for direct shooting and with free growth regulators for root induction for transformation, the leaf, petiole and root explants of A. rusticana were concultivated with Agrobacterium tumefaciens, LBA4404 which carries a binary vector pEND4K containing maize controlling element Ac or Ds, respectively: Selections were performed in the shoot induction medium supplemented with 100 mg/L kanamycin, and 500 mg/L carbenicillin transformation frequency showed about 8 to 10% in case of leaf disks. PCR md Southern blot analyses showed that the Ac and the Ds elements were integrated into the chromosome of donor plants.

  • PDF

The EST Analysis and Transgene Expression System in Rice

  • Kim, Jukon;Nahm, Baek-Hie
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.46-55
    • /
    • 1999
  • The expressed sequence tags(ESTs) from immature seed of rice, Oryza sativa cv Milyang 23, were partially sequenced and analyzed by homology. As of 1998, the partial sequences of about 6,600 cDNA clones were analyzed from normal and normalized immature seed cDNA libraries. About 2,200 ESTs were putatively identified by BLASTX deduced amino acid sequence homology analysis. About 20% of them were putatively identified as storage proteins. Also the clones were highly homologous to genes involved particularly in starch biosynthesis, glycolysis, signal transduction and defenses. Compared to 35% of redundancy in the ESTs of normal cDNA library, that from the substracted library was 15%. The Korea Rice Genome Network is maintained to provide the updated information of sequences, their homologies and sequence alignments of ESTs. For the stable expression of transgene in rice, diverse vectors were developed for overexpression, targeting and gene dosage effect with transit peptides (Tp) and matrix attachment region (MAR) sequence from chicken lysozyme locus. The rice calli were transformed via Agrobacterium tumefaciens LBA4404(pSB1) with the triparental mating technique and selected by herbicide resistance. The green fluorescent protein(GFP) gene in expression vector under the control of rbcS promoter-Tp was overexpressed upto 10 % of the total soluble protein. In addition, the Tp-sGFP fusion protein was properly processed during translocation into chloroplast. The expression of sGFP in the presence of MAR sequences was analyzed with Northern and immunoblot analysis. All the lines in which sGFP transgene with MAR sequence, showed position independent and copy number-dependent expression, while the lines without MAR showed the varied level of expression with the integration site. Thus the MAR sequence significantly reduced the variation in transgene expression between independent transformants.

  • PDF

Expression of CAB (Chlorophyll a/b Binding Protein) Gene in Transformed Plants (CAB (Chlorophyll a/b Binding Protein) 유전자의 형질전환 식물체에서 발현)

  • 박성원;김선원;이영기;강신웅;이청호;이종철;최순용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.1
    • /
    • pp.41-45
    • /
    • 2001
  • Transgenic tobacco plants were produced by the transformation of ginseng CAB gene using Agrobacterium tumefaciens LBA4404. The presence of CAB gene in the second generation of transgenic tobacco plant was confirmed by genomic PCR. The photosynthetic ability of transgenic plants was higher than normal tobacco plants and the maximum photosynthetic point of transgenic and normal tobacco plants was 500 $\mu$mol m$^{-2}$ s$^{-1}$ . The photosynthesis of C7, C11, 1, C14 cell lines was higher than normal plants at all the light intensities investigated. The photosynthesis of C2, C11, C14 cell lines in 90% dark condition was higher than normal plants. The chlorophyll contents of transgenic tobacco plants were almost same as normal plants. The % of dry weight, nicotine content, total sugar and nitrogen contents of harvested transgenic tobacco plant leaves were almost same as normal plants.

  • PDF