• 제목/요약/키워드: L-moments

검색결과 149건 처리시간 0.036초

L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도(II)-LH-모멘트법을 중심으로 (Derivatio of Optimal Design Flood by L-Moments and LH-Moments(II) - On the method of LH-Moments -)

  • 이순혁
    • 한국농공학회지
    • /
    • 제41권3호
    • /
    • pp.41-50
    • /
    • 1999
  • Derivatio of reasonable design floods was attempted by comparative analysis of design floods derived by Generalized Extreme Value(GEV) distribution using methods of L-moments and LH-moments for the annual maximum series at ten watersheds along Han, Nagdong. Geum, Yeongsan and Seomjin river systems, LH-coefficient of variation, LH-skewness and Lh-kurtosis were calcualted by KH-moment ration respectively. Paramenters were estimated by the Method of LH-Moments, Design floods obtained by Method of LH-Moments using different methods for plotting positionsi n GEV distribution and design floods were compared with those obtained using the Method of L-Moments by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results was found that design floods derived by the method of L-Moments and LH-Moments using Cunnane plotting position formula in the GEV distribution are much closer to those of the observed data in comparison with those obtained by methods of L-moments and LH-moments using the other formula for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors. In viewpoint of the fact that hydrqulic structures including dams and levees are genrally using design floods with the return period of two hundred years or so, design floods derived by LH-Moments are seemed to be more reasonable than those of L-Moments in the GEV distribution.

  • PDF

L-모멘트 및 LH-모멘트에 의한 GEV 분포모형의 실계홍수량의 유도 (Derivation of Design Flood by L-Moments and LH-Moments in GEV distributiion)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.479-485
    • /
    • 1999
  • This study was conducted to derived design floods by Generalized Extreme Value(GEV) distributiion for the annual maximum series at ten watersheds along Han, Nagdong, Geum , Yeongsan and Seomjin river systems. Adequency for the analysis of flood data used in this study was established by the test of Independence, Homogeneity , detection of Outliers. Coefficient of variation , skewness and kurtosis were calculated by the L-Moment, and LH-Moment ratio respectively. Parameters were estimated by the Method of L-Method of LH-Moment. Design floods obtained by Method of L-Moments and LH-Moments using different methods for plotting positions in GEV distributions and were compared with those obatined using the Method of L-Moments and LH-Moments by the Relative Mean Errors and Realtive Absoulte Errors. It was found that desgin floods derived by the method of L-Moments and LH-Moments using Cunnane plotting position foumula in the GEV distribution are much closer to those of the observed data in comparison with those obtained by methods of L-moments and LH-moments using the other formula for poltting postions from the viewpoint of Relative Mean Errors and Relative Absoulte Errors. In view of the fact that hydraulic structures indcluding dams and levees are generally usiong design floods with the return period of two hundred years or so, design floods derived by LH-Moments are seemed to be more reasonable than those of L-Moments in the GEV distribution.

  • PDF

L-모멘트 및 LH-모멘트 기법에 의한 적정 설계홍수량의 유도( I ) - L-모멘트법을 중심으로 - (Derivation of Optimal Design Flood by L-Moments and LB-Moments ( I ) - On the method of L-Moments -)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.45-57
    • /
    • 1998
  • This study was conducted to derive optimal design floods by Generalized Extreme Value (GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results were analyzed and summarized as follows. 1. Adequacy for the analysis of flood data was acknowledged by the tests of Independence, Homogeneity and detection of Outliers. 2. GEV distribution used in this study was found to be more suitable one than Pearson type 3 distribution by the goodness of fit test using Kolmogorov-Smirnov test and L-Moment ratios diagram in the applied watersheds. 3. Parameters for GEV distribution were estimated using Methods of Moments and L-Moments. 4. Design floods were calculated by Methods of Moments and L-Moments in GEV distribution. 5. It was found that design floods derived by the method of L-Moments using Weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors.

  • PDF

LH-모멘트의 차수에 따른 설계홍수량 추정 (Estimation of Design Flood by the Determination of Best Fitting Order for LH-Moments)

  • 맹승진;이순혁
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.233-236
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order for LH-moments of the annual maximum series at fifteen watersheds. Parameters of GEV distribution and flood flows of return period n years were derived by the methods of L, L1, L2, L3 and L4-moments. Frequency analysis of flood flow data generated by Monte Carlo simulation was performed by the methods of L, L1, L2, L3 and L4-moments using GEV distribution. Relative Root Mean Square Error (RRMSE), Relative Bias (RBIAS) and Relative Efficiency (RE) using methods of L, L1, L2, L3 and L4-moments for GEV distribution were computed and compared with those resulting from Monte Carlo simulation. At almost all of the watersheds, the more the order of LH-moments and the return periods increased, the more RE became, while the less RRMSE and RBIAS became. Consequently, design floods for the applied watersheds were derived by the methods of L3 and L4-moments among LH-moments in view of high confidence efficiency.

  • PDF

LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정(II) (Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments(II))

  • 맹승진;이순혁
    • 한국농공학회지
    • /
    • 제45권1호
    • /
    • pp.33-44
    • /
    • 2003
  • This study was conducted to estimate the design flood by the determination of best fitting order for LH-moments of the annual maximum series at fifteen watersheds. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized Extreme Value (GEV) in the first report of this project. Parameters of GEV distribution and flood flows of return period n years were derived by the methods of L, L1, L2, L3 and L4-moments. Frequency analysis of flood flow data generated by Monte Carlo simulation was performed by the methods of L, L1, L2, L3 and L4-moments using GEV distribution. Relative Root Mean Square Error. (RRMSE), Relative Bias (RBIAS) and Relative Efficiency (RE.) using methods of L, Ll , L2, L3 and L4-moments for GEV distribution were computed and compared with those resulting from Monte Carlo simulation. At almost all of the watersheds, the more the order of LH-moments and the return periods increased, the more RE became, while the less RRMSE and RBIAS became. The Absolute Relative Reduction (ARR) for the design flood was computed. The more the order of LH-moments increased, the less ARR of all applied watershed became It was confirmed that confidence efficiency of estimated design flood was increased as the order of LH-moments increased. Consequently, design floods for the appled watersheds were derived by the methods of L3 and L4-moments among LH-moments in view of high confidence efficiency.

LH-모멘트의 적정 차수 결정에 의한 설계홍수량 추정 ( I ) (Estimation of Design Flood by the Determination of Best Fitting Order of LH-Moments ( I ))

  • 맹승진;이순혁
    • 한국농공학회지
    • /
    • 제44권6호
    • /
    • pp.49-60
    • /
    • 2002
  • This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study. GEV distribution for the flood flow data of the applied watersheds was confirmed as the best one among others by the LH-moments ratio diagram and Kolmogorov-Smirnov test. Best fitting order of LH-moments will be derived by the confidence analysis of estimated design flood in the second report of this study.

L-모멘트법에 의한 적정 설계홍수량의 유도 (Derivation of Optimal Design Flood by L-Moments)

  • 이순혁;박명근;맹승진;정연수;김동주;류경식
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.318-324
    • /
    • 1998
  • This study was conducted to derive optimal design floods by Generalized Extreme-value(GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the relative mean and relative absolute error. It was found that design floods derived by the method of L-moments using weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions in view of relative mean and relative absolute error.

  • PDF

A COMPARATIVE EVALUATION OF THE ESTIMATORS OF THE 2-PARAMETER GENERALIZED PARETO DISTRIBUTION

  • Singh, V.P.;Ahmad, M.;Sherif, M.M.
    • Water Engineering Research
    • /
    • 제4권3호
    • /
    • pp.155-173
    • /
    • 2003
  • Parameters and quantiles of the 2-parameter generalized Pareto distribution were estimated using the methods of regular moments, modified moments, probability weighted moments, linear moments, maximum likelihood, and entropy for Monte Carlo-generated samples. The performance of these seven estimators was statistically compared, with the objective of identifying the most robust estimator. It was found that in general the methods of probability-weighted moments and L-moments performed better than the methods of maximum likelihood estimation, moments and entropy, especially for smaller values of the coefficient of variation and probability of exceedance.

  • PDF

Weibull-3 및 Wakeby 분포모형의 L-모멘트법에 의한 설계갈수량 비교분석 (Comparative Analysis of Deisgn Low Flow by L-moment in the Weibull-3 and Wakeby distributions)

  • 이순혁
    • 한국농공학회지
    • /
    • 제42권3호
    • /
    • pp.45-55
    • /
    • 2000
  • This study was carried out to derive optimal design low flows bythe Weibull-3 and Wakeby distributions for the partial consecutive duration series at seven watersheds along Han. nagdong, Geum Yeongsan and Seomjin river systems. L-coefficient of variation L-skewness and L-kurtosis were calculated by the L-moment ratio respectively. Parameters were estimated by the method of L-Moments with consecutive duration. Design low flows obtained by method of L-Moments using with consecutive duration, Design low flows obtained by method of L-Moments using different methods for plotting positions formulas in the Weibull-3 and Wakeby distributions were compared by the Root Mean Square Errors(RMSE). It has shown that design low flows derived by the method of L-moments using Weivull plotting position formula in Wakeby distribution were much closer to those of the observed data in comparison with those obtained by the methods of L-moments with the different formulas for plotting positions in Weibull-3 distribution from the viewpoint of Root Mean Square Errors.

  • PDF

L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정 (II)- LH-모멘트법을 중심으로 - (Estimation of Drought Rainfall by Regional Frequency Analysis Using L and LH-Moments (II) - On the method of LH-moments -)

  • 이순혁;윤성수;맹승진;류경식;주호길;박진선
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.27-39
    • /
    • 2004
  • In the first part of this study, five homogeneous regions in view of topographical and geographically homogeneous aspects except Jeju and Ulreung islands in Korea were accomplished by K-means clustering method. A total of 57 rain gauges were used for the regional frequency analysis with minimum rainfall series for the consecutive durations. Generalized Extreme Value distribution was confirmed as an optimal one among applied distributions. Drought rainfalls following the return periods were estimated by at-site and regional frequency analysis using L-moments method. It was confirmed that the design drought rainfalls estimated by the regional frequency analysis were shown to be more appropriate than those by the at-site frequency analysis. In the second part of this study, LH-moment ratio diagram and the Kolmogorov-Smirnov test on the Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions were accomplished to get optimal probability distribution. Design drought rainfalls were estimated by both at-site and regional frequency analysis using LH-moments and GEV distribution, which was confirmed as an optimal one among applied distributions. Design rainfalls were estimated by at-site and regional frequency analysis using LH-moments, the observed and simulated data resulted from Monte Carlotechniques. Design drought rainfalls derived by regional frequency analysis using L1, L2, L3 and L4-moments (LH-moments) method have shown higher reliability than those of at-site frequency analysis in view of RRMSE (Relative Root-Mean-Square Error), RBIAS (Relative Bias) and RR (Relative Reduction) for the estimated design drought rainfalls. Relative efficiency were calculated for the judgment of relative merits and demerits for the design drought rainfalls derived by regional frequency analysis using L-moments and L1, L2, L3 and L4-moments applied in the first report and second report of this study, respectively. Consequently, design drought rainfalls derived by regional frequency analysis using L-moments were shown as more reliable than those using LH-moments. Finally, design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were derived by regional frequency analysis using L-moments, which was confirmed as a more reliable method through this study. Maps for the design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were accomplished by the method of inverse distance weight and Arc-View, which is one of GIS techniques.