• Title/Summary/Keyword: L-lactide

Search Result 187, Processing Time 0.025 seconds

Synthesis, Properties and Permeation of Solutes through Hydrogels based on Poly(ethylene glycol)-co-Poly(lactones) diacrylate Macromers and Chitosan (UV 경화형 키토산/지방족 폴리에스터 Hydrogel IPN 제조 및 약물투과)

  • Cho, S.M.;Kim, S.Y.;Lee, Y.M.;Sung, Y.K.;Cho, C.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.229-230
    • /
    • 1998
  • Triblock copolymers from poly(ethylene glycol) (PEG) and D,L-lactide or $\varepsilon$-carprolactone were synthesized to prepare semi-interpenetrating polymer network (semi-IPN) with chitosan by U.V. irradiation method. Then, solute permeation through these semi-IPNs hydrogels were investigated. The structures of semi-IPNs were confirmed by FT-IR spectroscopy and wide angle X-ray diffractometer (WAXD). Equilibrium water content (EWC) of these hydrogels was in the range of 67-75%. The crystallinity, thermal properties and mechanical properties of semi-IPNs hydrogels were studied. All the hydrogels revealed a remarkable decrease in crystallinity as compared with PEG macromer itself. The tensile strengths of semi-IPNs hydrogels in dry state were rather high, but those of hydrogels in wet state decreased drastically. The permeabilities of solutes of hydrogels followed the swelling behaviors and were regulated by solute size.

  • PDF

Synthesis and pH-Dependent Micellization of a Novel Block Copolymer Containing s- Triazine Linkage

  • Pal Ravindra R.;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.373-384
    • /
    • 2005
  • Novel pH-sensitive moieties containing an s-triazine ring were synthesized with sulfonamide and secondary amino groups. The synthesized pH-sensitive moieties were used for the synthesis of a pH-sensitive amphiphilic ABA triblock copolymer. The pH-sensitive triblock copolymer was composed of diblock copolymers, methoxy poly(ethylene glycol)-poly ($\varepsilon$-caprolactone-co-D,L-lactide) (MPEG-PCLA), and pH-sensitive moiety. These copolymers could be dissolved molecularly in both acidic and basic aqueous media at room temperature due to secondary amino and sulfonamide groups. The synthesized s-triazine rings containing pH-sensitive compounds were characterized by ${^1}H-NMR,\;{^13}C-NMR$, and LC/MSD spectral data. The synthesized diblock and triblock copolymers were also characterized by ${^1}H-NMR$ and GPC analyses. The critical micelle concentrations at various pH conditions were determined by fluorescence technique using pyrene as a probe. Furthermore, the micellization and demicellization study of the triblock copolymer was done with pH-sensitive groups. The sensitivity towards pH change was further established by acid-base titration.

Stability Studies of Biodegradable Polymersomes Prepared by Emulsion Solvent Evaporation Method

  • Lee Yu-Han;Chang Jae-Byum;Kim Hong-Kee;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.359-364
    • /
    • 2006
  • Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(D,L-lactide), were synthesized by ring-opening polymerization for preparing polymer vesicles (polymersomes). Emulsion solvent evaporation method was used to fabricate the polymersomes. Scanning electron microscope (SEM) images confirmed that polymersomes have a hollow structure inside. Confocal laser microscope and optical microscope were also used to verify the hollow structure of polymersomes. Polymersomes having various sizes from several hundred nanometers to a few micrometers were fabricated. The size of the polymersomes could be readily controlled by altering the relative hydrodynamic volume fraction ratio between hydrophilic and hydrophobic blocks in the copolymer structure, and by varying the fabrication methods. They showed greatly enhanced stability with increased molecular weight of PEG. They maintained their physical and chemical structural integrities after repeated cycles of centrifugation/re-dispersion, and even after treatment with surfactants.

The Effect of Gamma Irradiation on PLGA and Release Behavior of BCNU from PLGA Wafer

  • Lee, Jin-Soo;Chae, Gang-Soo;Gilson Khang;Kim, Moon-Suk;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.352-356
    • /
    • 2003
  • The objectives of this study were to investigate the influence of gamma irradiation for sterilization on poly(D,L-lactide-co-glycolide) (PLGA) with different molecular weight and the effect of gamma irradiation on the release behavior of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) from PLGA wafer with various irradiation doses. The effect of gamma irradiation on PLGA was evaluated by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and electron paramagnetic resonance (EPR). The weight average molecular weight (M$_{w}$) and glass transition temperature (T$_{g}$) of PLGA decreased after gamma irradiation. The extent of M$_{w}$ reduction was dependent on irradiation dose and PLGA molecular weight. Using EPR spectroscopy, we successfully detected gamma irradiation induced free radicals in PLGA. The gamma irradiation increased the release rate of BCNU from PLGA wafer at applied irradiation doses except 2.5 Mrad of irradiation dose in this study.study.

Comparative In Vitro Toxicity Study of Docetaxel and Nanoxel, a Docetaxel-Loaded Micellar Formulation Using Cultured and Blood Cells

  • Do, Van Quan;Park, Kwang-Hoon;Park, Jung-Min;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.201-207
    • /
    • 2019
  • Nanoxel-$PM^{TM}$ (Nanoxel) is a docetaxel-loaded methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA). This newly developed and marketed nanoformulation exhibits an improved pharmacokinetic profile, efficacy, and safety. Although the safety of Nanoxel to docetaxel as well as its bioequivalence must be clinically confirmed, all biological activities have not been examined in in vitro or in vivo studies. Here, the toxicity in a cultured cell system and the effects on blood cells were tested with Nanoxel and docetaxel. The in vitro cytotoxicity of Nanoxel was found to be comparable to or slightly lower than that of docetaxel depending on the concentrations tested or the cell types. Neither docetaxel nor Nanoxel induced erythrocytes hemolysis and produced reactive oxygen species up to $100{\mu}M$. However, Nanoxel was able to enhance the aggregatory response of platelets to collagen, whereas docetaxel attenuated such aggregation in a range of $50-100{\mu}M$, while thrombin-induced aggregation was not affected by either of them. Docetaxel or Nanoxel did not alter basal level of $Ca^{2+}$ and 5-hydroxytryptamine-evoked $Ca^{2+}$ transient in vascular smooth muscle cells. These results suggest that the mPEG-PDLLA micellar formulation alters the toxicological properties of docetaxel, and that extra cautions are needed when evaluating the safety of nanomedicine.

Functionalization of PLLA Sheet Using Gamma-ray Irradiation (감마선 이용 친수성 PLLA 시트 기능화 및 특성 평가)

  • Gwon, Hui-Jeong;Jeong, Jin-Oh;Jeong, Sung In;Park, Jong-Seok;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2018
  • Preliminary study was perfomed to develop a biocompatible filter material using radiation energy. Electrosppined PLLA nano sheets were surface-modificated with hydrophilic groups(acrylic group) by using radiation. The physico-chemical and morphological characteristics of modified PLLA sheets were measured by ATR, SEM, contact angle, and hydrophilic (acryl group) introduction rate (TBO). As a result, there was no morphological(fiber structure) structure change due to radiation, and it was confirmed that an acrylic group was successfully introduced onto PLLA fiber sheet by radiation.

In Vitro Antitumor Activity of BCNU-Loaded PLGA Wafer Containing Additives (첨가제 함유 BCNU/PLGA웨이퍼의 in vitro 항암 활성)

  • Lee, Jin-Soo;An, Tae-Kun;Shin, Phil-Kyung;Chae, Ghang-Soo;Jeong, Je-Kyo;Lee, Bong;Cho, Sun-Hang;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • We fabricated the 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine)-loaded PLGA wafers containing poly(N-vinylpyrrolidone) (PVP) or tedium chloride (NaCl) in order to control the release profile of drug in special shape (3 in diameter, 1 mm in thickness) by direct compression method. In vitro release profiles of BCNU could be controlled by additives contained in the wafers. Initial release amount, release rate and duration of BCNU could be controlled with presence of PVP or NaCl. In vitro antitumor activity accessed using 9L gliosarcoma cell line has been evaluated by assaying the viability of cells treated with BCNU released from the wafers containing additives resulting in continuous growth inhibition of 9L gliosarcoma tumor cells. Specially, the continuous growth inhibition of BCNU-loaded PLGA wafers containing additives was more effective than that of non-additive BCNU-loaded PLGA wafers. The cytotoxic effect of the drug from the wafers containing NaCl as compared to wafers containing PVP was more enhanced.

Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target -Anti-cancer Potential of Nano-betulinic Acid in Lung Cancer-

  • Das, Jayeeta;Samadder, Asmita;Das, Sreemanti;Paul, Avijit;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA) and its poly (lactide-co-glycolide) (PLGA) nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA) + benzo[a]pyrene (BaP)]-induced lung cancer in mice in vivo. Methods: dBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA) were determined by using transmission electron microscopy (TEM), and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA) as a target were analyzed by using conventional circular dichroism (CD) and melting temperature (Tm) profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA); the ability of NdBA to cross the blood-brain barrier (BBB) was also examined. The stage of cell cycle arrest was confirmed by using a fluorescence-activated cell-sorting (FACS) data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater chemoprotective potential against lung cancer.

Preparation and Characterization of Demineralized Bone Particle-loaded PLGA Scaffold for Tissue Engineered Bone (조직공학적 골재생을 위한 탈미넬화된 골분을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang Ji Wook;Lee Bong;Han Chang Whan;Kim Mun Suk;Cho Sun Hang;Lee Hai Bang;Khang Gilson
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.382-390
    • /
    • 2004
  • One of the significant natural bioactive materials is demineralized bone particle (DBP) whose has a powerful induce. of new bone growth. In this study, we developed the DBP loaded poly-lactide (PLA) and poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. PLA/DBP and PLGA/DBP scaffolds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy. BMSCs were stimulated by osteogenic medium and characterized by histological stained Wright-Giemsa, Alizarin red, von Kossa, and alkaline phosphate activity (ALP). DBP impregnated scaffolds with BMSCs were implanted into the back of athymic nude mouse to observe the effect of DBP on the osteoinduction compared with control scaffolds. It can be observed that the porosity was above $90.2\%$ and the pore size was above 69.1$\mu$m. BMSCs could be differentiated into osteoprogenitor cells as result of wright-giemsa, alizarin red, von Kossa and ALP staining. In in vivo study, we could observed calcification region in PLA/DBP and PLGA/DBP groups, but calcification did not occur almost in control scaffolds. From these results, it seems that DBP as well as BMSCs play an important role for bone induction in PLA/DBP and PLGA/DBP scaffolds.

Preparation and Characterization of PLGA Scaffold Impregnated Keratin for Tissue Engineering Application (케라틴이 함유된 조직공학적 PLGA 지지체의 제조 및 특성 분석)

  • Oh, A-Young;Kim, Soon-Hee;Lee, Sang-Jin;Yoo, James J.;Dyke, Mark van;Rhee, John M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.403-408
    • /
    • 2008
  • Keratin is the major structural fibrous protein providing outer covering such as wool, hair, and nail. Keratin is useful as natural protein. We developed the keratin loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds (keratin/PLGA) for the possibility of the application of the tissue engineering using bone marrow mesenchymal (BMSCs). Keratin/PLGA (contents 0%, 10%, 20% and 50% of PLGA weight) scaffolds were prepared by solvent casting/salt leaching method. We characterized porosity, wettability, and water uptake ability, DSC of keratin/PLGA scaffold. We seeded BMSCs isolated from the femurs of rat into the inner core of the hybrid scaffold. Celluar viability were assayed by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT) test. We confirmed that keratin/PLGA scaffold is hydrophilic by wettability, and water uptake ability measurement results. In MTT assay results, cell viability in scaffolds impregnated 10 and 20 wt% of keratin were higher than other scaffolds. In conclusion, we suggest that keratin/PLGA scaffold may be useful to tissue engineering using BMSCs.