DOI QR코드

DOI QR Code

Comparative In Vitro Toxicity Study of Docetaxel and Nanoxel, a Docetaxel-Loaded Micellar Formulation Using Cultured and Blood Cells

  • 투고 : 2018.08.29
  • 심사 : 2018.10.04
  • 발행 : 2019.04.15

초록

Nanoxel-$PM^{TM}$ (Nanoxel) is a docetaxel-loaded methoxy-poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA). This newly developed and marketed nanoformulation exhibits an improved pharmacokinetic profile, efficacy, and safety. Although the safety of Nanoxel to docetaxel as well as its bioequivalence must be clinically confirmed, all biological activities have not been examined in in vitro or in vivo studies. Here, the toxicity in a cultured cell system and the effects on blood cells were tested with Nanoxel and docetaxel. The in vitro cytotoxicity of Nanoxel was found to be comparable to or slightly lower than that of docetaxel depending on the concentrations tested or the cell types. Neither docetaxel nor Nanoxel induced erythrocytes hemolysis and produced reactive oxygen species up to $100{\mu}M$. However, Nanoxel was able to enhance the aggregatory response of platelets to collagen, whereas docetaxel attenuated such aggregation in a range of $50-100{\mu}M$, while thrombin-induced aggregation was not affected by either of them. Docetaxel or Nanoxel did not alter basal level of $Ca^{2+}$ and 5-hydroxytryptamine-evoked $Ca^{2+}$ transient in vascular smooth muscle cells. These results suggest that the mPEG-PDLLA micellar formulation alters the toxicological properties of docetaxel, and that extra cautions are needed when evaluating the safety of nanomedicine.

키워드

참고문헌

  1. Takimoto, C.H. and Beeram, M. (2008) Microtubule stabilizing agents in clinical oncology in The Role of Microtubules in Cell Biology, Neurobiology, and Oncology (Fojo, T. Ed.). Humana Press, Totowa, NJ, pp. 395-419.
  2. Herbst, R.S. and Khuri, F.R. (2003) Mode of action of docetaxel-a basis for combination with novel anticancer agents. Cancer Treat. Rev., 29, 407-415. https://doi.org/10.1016/S0305-7372(03)00097-5
  3. Clarke, S.J. and Rivory, L.P. (1999) Clinical pharmacokinetics of docetaxel. Clin. Pharmacokinet., 36, 99-114. https://doi.org/10.2165/00003088-199936020-00002
  4. Kenmotsu, H. and Tanigawara, Y. (2015) Pharmacokinetics, dynamics and toxicity of docetaxel: why the Japanese dose differs from the Western dose. Cancer Sci., 106, 497-504. https://doi.org/10.1111/cas.12647
  5. Yanasarn, N., Sloat, B.R. and Cui, Z. (2009) Nanoparticles engineered from lecithin-in-water emulsions as a potential delivery system for docetaxel. Int. J. Pharm., 379, 174-180. https://doi.org/10.1016/j.ijpharm.2009.06.004
  6. Kim, G.H., Lee, J.Y., Kang, Y.M., Kang, K.N., Kim, E.S., Kim, D.Y., Kim, J.H. and Kim, M.S. (2011) Preparation and characterization of self-emulsified docetaxel. J. Nanomater., 2011, 6.
  7. Du, W., Hong, L., Yao, T., Yang, X., He, Q., Yang, B. and Hu, Y. (2007) Synthesis and evaluation of water-soluble docetaxel prodrugs-docetaxel esters of malic acid. Bioorg. Med. Chem., 15, 6323-6330. https://doi.org/10.1016/j.bmc.2007.04.002
  8. Naik, S., Patel, D., Surti, N. and Misra, A. (2010) Preparation of PEGylated liposomes of docetaxel using supercritical fluid technology. J. Supercrit. Fluids, 54, 110-119. https://doi.org/10.1016/j.supflu.2010.02.005
  9. Liang, G., Jia-Bi, Z., Fei, X. and Bin, N. (2010) Preparation, characterization and pharmacokinetics of N-palmitoyl chitosan anchored docetaxel liposomes. J. Pharm. Pharmacol., 59, 661-667. https://doi.org/10.1211/jpp.59.5.0006
  10. Lee, S.-W., Yun, M.-H., Jeong, S.W., In, C.-H., Kim, J.-Y., Seo, M.-H., Pai, C.-M. and Kim, S.-O. (2011) Development of docetaxel-loaded intravenous formulation, Nanoxel-$PM^{TM}$ using polymer-based delivery system. J. Control. Release, 155, 262-271. https://doi.org/10.1016/j.jconrel.2011.06.012
  11. Lee, M.Y., Song, H., Nakai, J., Ohkura, M., Kotlikoff, M.I., Kinsey, S.P., Golovina, V.A. and Blaustein, M.P. (2006) Local subplasma membrane $Ca^{2+}$ signals detected by a tethered $Ca^{2+}$ sensor. Proc. Natl. Acad. Sci. U.S.A., 103, 13232-13237. https://doi.org/10.1073/pnas.0605757103
  12. Oh, S.-J., Kim, H., Liu, Y., Han, H.-K., Kwon, K., Chang, K.-H., Park, K., Kim, Y., Shim, K., An, S.S.A. and Lee, M.-Y. (2014) Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation. Toxicol. Lett., 225, 422-432. https://doi.org/10.1016/j.toxlet.2014.01.015
  13. Liu, Y., Park, J.-M., Chang, K.-H., Huh, H.J., Lee, K. and Lee, M.-Y. (2016) AMP-activated protein kinase mediates the antiplatelet effects of the thiazolidinediones rosiglitazone and pioglitazone. Mol. Pharmacol., 89, 313-321. https://doi.org/10.1124/mol.115.102004
  14. Park, J.-M., Chang, K.-H., Park, K.-H., Choi, S.-J., Lee, K., Lee, J.-Y., Satoh, M., Song, S.-Y. and Lee, M.-Y. (2016) Differential effects between cigarette total particulate matter and cigarette smoke extract on blood and blood vessel. Toxicol. Res., 32, 353-358. https://doi.org/10.5487/TR.2016.32.4.353
  15. Park, J.-M., Lee, J.-H., Na, C.-S., Lee, D., Lee, J.-Y., Satoh, M. and Lee, M.-Y. (2016) Heartwood extract of Rhus verniciflua Stokes and its active constituent fisetin attenuate vasoconstriction through calcium-dependent mechanism in rat aorta. Biosci. Biotechnol. Biochem., 80, 493-500. https://doi.org/10.1080/09168451.2015.1107464
  16. Chang, K.H., Park, J.M., Lee, C.H., Kim, B., Choi, K.C., Choi, S.J., Lee, K. and Lee, M.Y. (2017) NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells. Toxicol. In Vitro, 38, 49-58. https://doi.org/10.1016/j.tiv.2016.10.013
  17. Ojima, I., Lichtenthal, B., Lee, S., Wang, C. and Wang, X. (2016) Taxane anticancer agents: a patent perspective. Expert Opin. Ther. Pat., 26, 1-20. https://doi.org/10.1517/13543776.2016.1111872
  18. Huang, X.-X., Zhou, C.-L., Wang, H., Chen, C., Yu, S.-Q., Xu, Q., Zhu, Y.-Y. and Ren, Y. (2011) Pharmacokinetics, efficacy, and safety evaluation of docetaxel/hydroxypropylsulfobutyl-${\beta}$-cyclodextrin inclusion complex. AAPS Pharm-SciTech, 12, 665-672. https://doi.org/10.1208/s12249-011-9631-0
  19. Wang, Y.B., Wang, J.C., Meng, M., Zhang, H. and Zhang, Q. (2010) Preparation and evaluation of docetaxel-loaded albumin nanoparticles for intravenous administration. J. Chin. Pharm. Sci., 19, 214-222.
  20. Engels, F.K., Mathot, R.A.A. and Verweij, J. (2007) Alternative drug formulations of docetaxel: a review. Anticancer Drugs, 18, 95-103. https://doi.org/10.1097/CAD.0b013e3280113338
  21. Elm’hadi, C., Tanz, R., Khmamouche, M.R., Toreis, M., Mahfoud, T., Slimani, K.A., Errihani, H. and Ichou, M. (2016) Toxicities of docetaxel: original drug versus genericsa comparative study about 81 cases. SpringerPlus, 5, 732. https://doi.org/10.1186/s40064-016-2351-x
  22. Fu, P.P., Xia, Q., Hwang, H.-M., Ray, P.C. and Yu, H. (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal., 22, 64-75. https://doi.org/10.1016/j.jfda.2014.01.005