Browse > Article

Preparation and Characterization of Demineralized Bone Particle-loaded PLGA Scaffold for Tissue Engineered Bone  

Jang Ji Wook (Department of Polymer Engineering, Pukyong National University)
Lee Bong (Department of Polymer Engineering, Pukyong National University)
Han Chang Whan (Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea)
Kim Mun Suk (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology)
Cho Sun Hang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology)
Lee Hai Bang (Nanobiomaterials Laboratory, Korea Research Institute of Chemical Technology)
Khang Gilson (Department of Polymer Nano Science and Technology, Chonbuk National University)
Publication Information
Polymer(Korea) / v.28, no.5, 2004 , pp. 382-390 More about this Journal
Abstract
One of the significant natural bioactive materials is demineralized bone particle (DBP) whose has a powerful induce. of new bone growth. In this study, we developed the DBP loaded poly-lactide (PLA) and poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. PLA/DBP and PLGA/DBP scaffolds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy. BMSCs were stimulated by osteogenic medium and characterized by histological stained Wright-Giemsa, Alizarin red, von Kossa, and alkaline phosphate activity (ALP). DBP impregnated scaffolds with BMSCs were implanted into the back of athymic nude mouse to observe the effect of DBP on the osteoinduction compared with control scaffolds. It can be observed that the porosity was above $90.2\%$ and the pore size was above 69.1$\mu$m. BMSCs could be differentiated into osteoprogenitor cells as result of wright-giemsa, alizarin red, von Kossa and ALP staining. In in vivo study, we could observed calcification region in PLA/DBP and PLGA/DBP groups, but calcification did not occur almost in control scaffolds. From these results, it seems that DBP as well as BMSCs play an important role for bone induction in PLA/DBP and PLGA/DBP scaffolds.
Keywords
scaffold; DBP; BMSCs; osteogenesis; tissue engineered bone;
Citations & Related Records

Times Cited By Web Of Science : 24  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 E. Wintermantel, J. Mayer, J. Blum, K. L. Eckert, P. Luscher, and M. Mathey, Biomaterials, 17, 83 (1996)   DOI   PUBMED   ScienceOn
2 L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, J. Biomech. Eng., 113, 143 (1991)   DOI   PUBMED   ScienceOn
3 C. B. Huggins and M. R. Urist, Science, 167, 896 (1971)   DOI   PUBMED   ScienceOn
4 K. Whang, C. H. Thomas, and K. E. Healy, Polymer, 36, 837 (1995)   DOI   ScienceOn
5 M. K. Choi, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 318 (2001)
6 S. J. Lee, D. H. Lee, G. Khang, Y. M. Lee, and H. B. Lee, Macromol. Chem. Symp., 15, 201 (2002)
7 L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer, J. Biomed. Mater. Res., 11, 27 (1993)
8 K. A. Athanasiou, A. R. Singhal, C. M. Agrawal, and B. D. Boyan, Clin Orthop., 315, 272 (1995)
9 J. Wang, R Yang, L. C. Gerstenfe1d, and M. J. Glimcher, Calcif. Tissue Int., 67, 314 (2000)   DOI   PUBMED   ScienceOn
10 S. P. Baldwin and W. M. Saltzman, Adv. Drug Deliv. Rev., 33, 71 (1998)   DOI   PUBMED   ScienceOn
11 A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993)   DOI   PUBMED   ScienceOn
12 A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993)
13 G. Khang, C. S. Park, J. M. Rhee, S. J. Lee, Y. M. Lee, I. Lee, M. K. Choi, and H. B. Lee, Korea Polym. J., 9, 267 (2001)
14 G. Khang, S. J. Lee, and H. B. Lee, 'Polymer-cell Interaction', in Tissue Engineering; Concepts and Application, 2nd Eds., J. J. Yoo, and I. Lee, Editors, Korea Med. Pub. Co., Seoul, p 297 (2002)
15 M. B. Habal, Clin. Orthop., 188, 239 (1984)
16 N. C. Rath and A. H. Reddi, Nature, 278, 855 (1979)   DOI   PUBMED   ScienceOn
17 E. K. Jeon, G. Khang, I. Lee, J. M. Rhee, and H. B. Lee, Polymer(Korea), 25, 893 (2001)
18 J. Wang and M. J. Glimcher, Calcif. Tissue Int., 65, 156 (1999)   DOI   PUBMED
19 J. O. Hollinger and J. P. Schmitz, J. Oral Maxillofac. Surg., 45, 594 (1987)   DOI   PUBMED   ScienceOn
20 D. M. Smith, D. W. Hua, and W. L. Earl, MRS Bull., 19, 44 (1994)
21 H. L. Ritter and L. C. Drake, Ind. Eng. Chem., 17, 782 (1945)
22 C. Lasa, J. Hollinger, W. Drohan, and M. MacPhee, Plast. Resconst. Surg., 96, 1409 (1995)   DOI   ScienceOn
23 H. D. Adkinsson, J. Strauss-Schoerenberger, M. Gillis, R. Wilkins, M. Jackson, and K. A. Hruska, J. Orthop. Res., 18, 503 (2000)   DOI   PUBMED   ScienceOn
24 S. Mizuno and J. Glowacki, Exp. Cell. Res., 227, 89 (1996)   DOI   PUBMED   ScienceOn
25 J. Wang and M. J. Glimcher, Calcif. Tissue Int., 65, 486 (1999)   DOI   PUBMED   ScienceOn
26 H. E. Jergesen, J. Chua, R. T. Kao, and L. B. Kaban, Clin. Orthop., 268, 253 (1991)
27 O. Bostman, J. Bone Joint Surg., 73, 148 (1991)   DOI
28 C. M. Agrawal, G. G. Niederauer, D. M. Micallef, and K. A. Athanasiou, 'The use of PLA-PGA Polymers in Orthopedics', in Encyclopedic Handbook of Biomaterials and Bioengineering, 2nd Eds., Marcel Dekker, New York, p 1055 (1995)
29 H. S. Kim, I. Lee, J. M. Lee, C. W. Han, J. H. Sung, M. Y. Park, G. Khang, and H. B. Lee, J. Korea Soc. Endocrinology, 17, 206 (2002)
30 J. W. Jang, B. Lee, C. W. Han, I. Lee, H. B. Lee, and G. Khang, Polymer(Korea), 27, 226 (2003)
31 M. R. Urist, Science, 150, 893 (1965)   DOI   PUBMED   ScienceOn
32 S. Mizuno and J. Glowacki, Biomaterials, 17, 1819 (1996)   DOI   PUBMED   ScienceOn
33 J. M. Lane and H. S. Sandhu, Orthop. Clin. North Am., 18, 213 (1997)
34 E. K. Jeon, J. Y. Shim, H. J. Whang, G. Khang, I. Jo, I. Lee, J. M. Rhee, and H. B. Lee, Biomater. Res., 5, 23 (2001)
35 G. Khang, P. Shin, I. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002)