• Title/Summary/Keyword: L-lactate dehydrogenase (L-LDH)

Search Result 128, Processing Time 0.021 seconds

The Toxicological Pathologic Study of Amanita muscaria in Sprague-Dawley Rat (Amanita muscaria 경구투여 시 Sprague-Dawley Rat에서의 독성병리 연구)

  • Kim, Jin;Kim, Hyeong-Jin;Kim, So-Jung;Kim, Byeong-Soo;Kim, Sang-Ki;Park, Byung-Kwon;Park, Young-Seok;Cho, Sung-Dae;Jung, Ji-Won;Nam, Jeong-Seok;Choi, Chang-Sun;Lee, Seung-Ho;Jung, Ji-Youn
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1152-1158
    • /
    • 2009
  • For the toxicological pathologic study of amanita muscaria, we have investigated single and repeated dose toxicity in Sprague-Dawley (SD) rats. Single dose toxicity study was identified as catalepsy, incline and tail pinch methods (control 0 mg/kg, low 3.3 mg/kg, middle 16.5 mg/kg, high 33.0 mg/kg). Repeated dose toxicity study was carried out in blood tests, serum tests and histopathological methods. Neurotoxicity - muscle paralysis, and convulsion and loss of movement - was observed at 33.0 mg/kg group in the single dose toxicity study. Dysfunction of liver and kidney were shown in the repeated oral administration of the amanita muscaria at 3${\sim}$4 weeks. Serum chemistry results revealed a marked increase of LDH [Lactate Dehydrogenase (3181.5 IU/L; normal 230-460 IU/l)], ALT [Alanine transaminase (124.0 IU/l; normal <40 IU/l)] but the kidney was normal. Histopathological results show interstitial edema and tubular epithelial necrosis in the kidney. These results suggest that amanita muscaria has a neurotoxic effect and causes dysfunction of liver and kidney in the SD rat.

Ethanol Extract from Cnidium monnieri (L.) Cusson Induces G1 Cell Cycle Arrest by Regulating Akt/GSK-3β/p53 Signaling Pathways in AGS Gastric Cancer Cells (AGS 위암세포에서 Akt/GSK-3β/p53 신호경로 조절을 통한 벌사상자 에탄올 추출물의 G1 Cell Cycle Arrest 유도 효과)

  • Lim, Eun Gyeong;Kim, Eun Ji;Kim, Bo Min;Kim, Sang-Yong;Ha, Sung Ho;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Cnidium monnieri (L.) Cusson is distributed in China and Korea, and the fruit of C. monnieri is used as traditional Chinese medicine to treat carbuncle and pain in female genitalia. In this study, we examined the anti-proliferation and cell cycle arrest effects of ethanol extracts from C. monnieri (CME) in AGS gastric cancer cells. Our results show that CME suppressed cell proliferation and induced release of lactate dehydrogenase (LDH) in AGS cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and LDH assay. Cell morphology was altered by CME in a dose-dependent manner. In order to identify the cell cycle arrest effects of CME, we investigated cell cycle analysis after CME treatment. In our results, CME induced cell cycle arrest at G1 phase. Protein kinase B (Akt) plays a major role in cell survival mechanisms such as growth, division, and metastasis. Akt protein regulates various downstream proteins such as glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and tumor protein p53 (p53). Expression levels of p-Akt, p-GSK-$3{\beta}$, p53, p21, cyclin E, and cyclin-dependent kinase 2 (CDK2) were determined by Western blot analysis. Protein levels of p-Akt, p-GSK-$3{\beta}$, and cyclin E were reduced while those of p53, p21, and p-CDK2 (T14/Y15) were elevated by CME. Moreover, treatment with CME, LY294002 (phosphoinositide 3-kinase/Akt inhibitor), BIO (GSK-$3{\beta}$ inhibitor), and Pifithrin-${\alpha}$ (p53 inhibitor) showed that cell cycle arrest effects were mediated through regulation of the Akt/GSK-$3{\beta}$/p53 signaling pathway. These results suggest that CME induces cell cycle arrest at G1 phase via the Akt/GSK-$3{\beta}$/p53 signaling pathway in AGS gastric cancer cells.

Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure (비강내 점적 노출을 통한 산화 알루미늄 나노입자의 폐독성 평가)

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Jo, Eunhye;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • Objective: The use of nanoparticle products is expected to present a potential harmful effect on consumers. Also, the lack of information regarding inhaled nanoparticles may pose a serious problem. In this study, we addressed this issue by studying pulmonary toxicity after nasal instillation of Al-NPs in SD rats. Methods: The animals were exposed to Al-NPs at 1 mg/kg body weight (low dose), 20 mg/kg body weight (medium dose) and 40 mg/kg body weight (high dose). To determine pulmonary toxicity, bronchoalveolar lavage (ts.AnBAL) fluid analysis and histopathological examination were conducted in rats. In addition, cell viability was investigated at 24 hours after the treatment with Al-NPs. Results: BAL fluid analysis showed that total cells (TC) count and total protein (TP) concentrations increased significantly in all treatment groups, approximately two to three times. Also, lactate dehydrogenase (LDH) and cytokines such as TNF-alpha and IL-6 dose-dependently increased following nasal instillation of Al-NPs. However, polymorphonuclear leukocytes (PMNs) levels showed no significant changes in a dose dependant manner in BAL fluid. In the cytotoxicity analysis, the treatment of Al-NPs significantly and dose-dependently induced cell viability loss (20 to 30%) and damage of cell membrane (5 to 10%) in rat normal lung epithelial cells (L2). Conclusions: Our results suggest that inhaled Al-NPs in the lungs may be removed quickly by alveolar macrophages with minimal inflammatory reaction, but Al-NPs have the potential to affect lung permeability. Therefore, extensive toxicity evaluations of Al-NPs are required prior to their practical application as consumer products.

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo;Silva, Joao P.;Ferreirinha, Pedro;Leitao, Alexandre F.;Andrade, Fabia K.;da Costa, Rui M. Gil;Cristelo, Cecilia;Rosa, Morsyleide F.;Vilanova, Manuel;Gama, F. Miguel
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

Protective Effect of Radiation-induced New Blackberry Mutant γ-B201 on H2O2-induced Oxidative Damage in HepG2 Cells (H2O2 에 의해 유도된 HepG2 세포의 산화적 스트레스에 대한 신품종 방사선 돌연변이 블랙베리 γ-B201의 세포 보호 효과)

  • Cho, Byoung Ok;Lee, Chang-Wook;So, Yangkang;Jin, Chang-Hyun;Yook, Hong-Sun;Byun, Myung-Woo;Jeong, Yong-Wook;Park, Jong Chun;Jeong, Il-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.384-389
    • /
    • 2014
  • The objective of the present study was to investigate the chemical composition of anthocyanin-enriched extract of radiation-induced blackberry (Rubus fruticosus L.) mutant (${\gamma}$-B201) as well as the protective effect of ${\gamma}$-B201 against oxidative stress in vitro. The cytotoxicity, reactive oxygen species (ROS) scavenging capacity, and DNA damage were assessed by WST-1 assay, flow cytometry, and comet assay, respectively. Lactate dehydrogenase, superoxide dismutase, and catalase activities were determined by using a commercial kit. The in vitro results showed that ${\gamma}$-B201 increased the cell viability, reduction of lactate dehydrogenase release, and intracellular ROS scavenging capacity in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells. Furthermore, treatment with ${\gamma}$-B201 attenuated DNA damage in $H_2O_2$-treated HepG2 cells and treatment with ${\gamma}$-B201 restored the activity of superoxide dismutase and catalase in $H_2O_2$-treated HepG2 cells. In conclusion, the present study suggests that ${\gamma}$-B201 blackberry extract can exert a significant cytoprotective effect against $H_2O_2$-induced cell damage.

Nutritional Components and Their Antioxidative Protection of Neuronal Cells of Litchi (Litchi chinensis Sonn.) Fruit Pericarp (리치 과피의 영양화학 성분 및 항산화성 신경세포 보호효과)

  • Jeong, Hee-Rok;Choi, Gwi-Nam;Kim, Ji-Hye;Kwak, Ji-Hyun;Kim, Yeon-Su;Jeong, Chang-Ho;Kim, Dae-Ok;Heo, Ho-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.481-487
    • /
    • 2010
  • The nutritional components, antioxidant, and neuroprotective effects of water and a 50% methanol extract from litchi fruit pericarp were investigated. The most abundant mineral, amino acid, and fatty acid were K, proline, and palmitic acid, respectively. In addition, the total water phenolics and 50% methanol extracts were 8.02 and 12.28 mg/g, respectively. The DPPH, ABTS radical scavenging activities and ferric reducing antioxidant power of the water and 50% methanol extracts showed dose-dependent antioxidant activity. In a cell viability assay using MTT, almost all extracts showed a protective effect against $H_2O_2$-induced neurotoxicity, and lactate dehydrogenase leakage was also inhibited by the pericarp extracts. In particular, the 50% methanol extract showed a higher cell membrane protective effect than the water extract at the highest concentration. Consequently, these data suggest that litchi fruit pericarp can be utilized as an effective and safe functional food substances for natural antioxidants and may reduce the risk of neurodegenerative disorders.

Neuronal Cell Protective Effects of Hot Water Extracts from Guava (Psidium guajava L.) Fruit and Leaf (구아바 열매와 잎 열수 추출물의 신경세포 보호효과)

  • Jeong, Chang-Ho;Jeong, Hee-Rok;Choi, Gwi-Nam;Kwak, Ji-Hyun;Kim, Ji-Hye;Park, Soo-Jeong;Kim, Dae-Ok;Shim, Ki-Hwan;Choi, Sung-Gil;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.124-129
    • /
    • 2011
  • PC12 neuronal cell-protective effects of hot water extracts of guava fruit and leaf were evaluated. Total phenolic levels in fruit and leaf were 11.75 and 293.25 mg/g, respectively. Gallic acid, the predominant phenoic, was detected in both extracts. Intracellular reactive oxygen species (ROS) accumulation after $H_2O_2$ treatment was significantly reduced when the hot water extract of guava leaf was added to cell medium, compared to PC12 cells treated with $H_2O_2$ only. In a cell viability assay using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl- tetrazoliumbromide (MTT), the hot water extracts of fruit and leaf protected against $H_2O_2$-induced neurotoxicity. The leaf extract was more effective in terms of inhibition of lactate dehydrogenase (LDH) release into medium, compared to the fruit extract. These in vitro data suggest that hot water extracts of guava fruit and leaf may be useful in treatment of neurodegenerative conditions such as Alzheimer's disease.

Antiglycemic Effect of Carnosine in Diabetic Mice (당뇨 마우스에서 카르노신의 혈당강하 효과)

  • Hue, Jin-Joo;Kim, Jong-Soo;Kim, Jun-Hyeong;Nam, Sang-Yoon;Yun, Young-Won;Jeong, Jae-Hwang;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.4
    • /
    • pp.391-397
    • /
    • 2009
  • Carnosine is a dipeptide ($\beta$-alanyl-L-histidine) found in mammalian brain, eye, olfactory bulb and skeletal muscle at high concentrations. Its biological functions include antioxidant and anti-glycation activities. The objectives of this study were to investigate anti-diabetic effects of carnosine as determined by blood glucose levels in glucose tolerance test (GTT) and insulin tolerance test (ITT), insulin level and serum biochemical and lipid levels in male C57BL/6J db/db mice. There were five experimental groups including normal (C57BL/6J), control (vehicle), and three groups of carnosine at doses of 6, 30, and 150 mg/kg b.w. Carnosine was orally administered to the diabetic mice everyday for 8 weeks. There was no significant difference in body weight changes in carnosine-treated groups compared to the control. The treatments of carnosine significantly decreased the blood glucose level in the diabetic mice compared with the control (p < 0.05) after 5 weeks. The treatments of carnosine also significantly decreased the blood glucose levels in GTT and ITT and glycosylated hemoglobin (HbA1c), compared with the control (p < 0.05). Carnosine at the dose of 6 mg/kg significantly decreased the serum insulin level compared to the control (p < 0.05). Carnosine significantly increased total proteins but significantly decreased lactate dehydrogenase and blood urea nitrogen compared with the control (p < 0.05). Carnosine also significantly decreased glucose, LDL, and triglyceride in the serum of diabetic mice compared to the control (p < 0.05). These results suggest that carnosine has a hypoglycermic effect resulting from reduction of glucose and lipid levels and that high carnosine-containing diets or drugs may give a benefit for controlling diabetes mellitus in humans.