• Title/Summary/Keyword: Kutta 조건

Search Result 58, Processing Time 0.022 seconds

Analysis of Two-dimensional Hydrofoil Problems Using Higher Order Panel Method based on B-Splines (B-스플라인 고차패널법에 의한 2차원 수중익 문제 해석)

  • Chung-Ho Cho;Gun-Do Kim;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.9-20
    • /
    • 1999
  • A higher order panel method based on B-spline representation for both the geometry and the velocity potential is developed for the solution of the flow around two-dimensional lifting bodies. The self-influence functions due to the normal dipole and the source are separated into the singular and nonsingular parts, and then the former is integrated analytically whereas the latter is integrated using Gaussian quadrature. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution around lifting foils with much fewer panels than existing low order panel methods.

  • PDF

Analysis of Free Vibration Characteristics of Tapered Friction Piles in Non-homogeneous Soil Layers (불균질 지반에 설치된 테이퍼 마찰말뚝의 자유진동 특성 분석)

  • Lee, Joon Kyu;Ko, Junyoung;Lee, Kwangwoo;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • This paper presents a new analytical model for estimating the free vibration of tapered friction piles. The governing differential equation for the free vibration of statically axially-loaded piles embedded in non-homogeneous soil is derived. The equation is numerically integrated by the Runge-Kutta method, and then the eigenvalue of natural frequency is determined by the Regula-Falsi scheme. For a cylindrical non-tapered pile, the computed natural frequencies compare well with the available data from literature. Numerical examples are presented to investigate the effects of the tapering, the skin friction resistance, the end condition of the pile, the vertical compressive loading, and the soil non-homogeneity on the natural frequency and mode shape of tapered friction piles.

Prediction of Steady Performance of a Propeller by Using a Potential-Based Panel Method (포텐셜을 기저로한 패널법에 의한 프로펠러의 정상 성능 해석)

  • Kim, Young-Gi;Lee, Jin-Tae;Lee, Chang-Sup;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-86
    • /
    • 1993
  • This paper describes a potential-based panel method for the prediction of steday performance of a marine propeller operating in a uniform oncoming flow. An integral equation with unknown dipole strengths is formulated by distributing the normal dipoles and/or sources on the blade and hub surfaces and the wake sheet, and is solved numerically upon discretization. A hyperboloidal panel has been adopted to compute the potential induced by a normal dipole on a non-planar quadrilateral panel. The Kutta condition is satisfied by iteratively annulling the pressure jumps at the trailing edge. Extensive convergence tests are carried out, and the influence of the wake model upon performance is studied. Predicted performance is shown to correlate well with the experiments.

  • PDF

Steady/Unsteady Analysis of Ducted Propellers by Using a Surface Panel Method (정상 및 비정상 유동중 덕트 프로펠러의 성능해석)

  • Kim, Kwang;Pyo, Sang-Woo;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.30-36
    • /
    • 1999
  • A surface panel method for the analysis of ducted propellers in both uniform and non-uniform onset inflow is developed. A low order, perturbation potential based panel method with an efficient numerical Kutta condition is used. The boundary surface is discretized with hyperboloidal panels and the boundary condition is applied at the panel centroids. The unsteady analysis is based on a time-step algorithm in time domain. Numerical implementation is employed into both steady and unsteady problems. The results with the resent method are shown to have good convergence on the circumferential distribution of circulation on the duct. The effect of the propeller tip clearance on the circumferential circulation on the duct is also presented Numerical results on forces and moments of the propeller and the duct are compared with other numerical results and experimental data.

  • PDF

Free Vibration of Tapered Beams (변단면(變斷面) 보의 자유진동(自由振動) 해석(解析))

  • Lee, Byoung Koo;Oh, Sang Jin;Choi, Gyu Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.37-46
    • /
    • 1991
  • A method is developed for solving the natural frequencies and mode shapes of linearly variable tapered beams. The governing differential equation for the tapered beam is derived. Three kinds of cross sectional shape are considered in differential equation. The Runge-Kutta method and the determinant search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. The hinged-hinged, hinged-clamped, damped-clamped and free-damped end constraints are investigated in numerical examples. The lowest four nondimensional natural frequencies are obtained as functions of $d_b/d_a$. ratio. The effects of end constraints and cross sectional shapes on frequencies are analyzed and typical mode shapes are also presented.

  • PDF

Numerical Analysis of Lifting Potential Flow around a Three-Dimensional Body moving beneath the Free Surface (자유표면하에서 전진하는 3차원 물체 주위의 양력 흐름 수치 해석)

  • B.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.21-32
    • /
    • 1992
  • Numerical solutions are presented for solving the free surface flow created by a three-dimensional body moving beneath the free surface with constant velocity at an angle of attack. The solution is obtained using a panel method based on the perturbation potential, which employs Havelock sources and normal dipoles distributed on the body surface and Havelock normal dipoles in the wake downstream of the trailing edge. A pressure Kutta condition with an iterative solution procedure is implemented to satisfy equal pressure condition on the upper and lower surfaces at the trailing edge. Numerical calculation examples in the present paper include an ellipsoid at zero angle of attack, a rectangular planform wing at a small angle of attack in the limit of zero Froude number and then free surface flows and hydrodynamic forces acting on the submerged spheroid and parabolic strut are calculated. Discussions are made about the validity of the present method.

  • PDF

Analysis of End-Plated Propellers by Panel Method (패널법에 의한 날개끝판부착 프로펠러의 해석)

  • C.S. Lee;I.S. Moon;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.55-63
    • /
    • 1995
  • This paper describes the procedure to analyze the performance of the end-plated propeller(EPP) by a boundary integral method. The screw blade(SB) and end-plate(EP) are represented by a set of quadrilateral panels, where the source and normal dipole of uniform strength are distributed. The perturbation velocity potential, being the only unknown via the potential-based formulation, is determined by satisfying the flow tangency condition on the blade and the end-plate at the same time. The Kutta condition is satisfied through an iterative process by requiring the null pressure jump across the upper and lower sides of the trailing edges of both the SH and the EP. Sample calculations indicate that the EP increases the loading near the tip of the SB while spreading the trailing vortices along the trailing edge of the EP, thus avoiding the strong tip-vortex formation. Predicted performance of the EPP shows good correlations with the experimental results. The method is therefore considered applicable in designing and analyzing the EPP which may be an alternative for energy-saving propulsive devices.

  • PDF

Buckling Loads of Piles with Allowance for Self-Weight (자중효과를 고려한 말뚝의 좌굴하중)

  • Lee, Joon-Kyu;Lee, Kwang-Woo;Jeon, Young-Jin;Kwon, O-Il;Choi, Yong-Hyuk;Choi, Jeong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-193
    • /
    • 2023
  • This paper presents the buckling behavior of a pile considering its self-weight. The differential equation and boundary conditions governing the buckling of partially embedded piles in nonhomogeneous soils are derived. The buckling load and mode shape of the pile are numerically computed by the Runge-Kutta method combined with the Regula-Falsi algorithm. The obtained numerical solutions for bucking loads agree well with the results available from the literature. Numerical examples are given to analyze the buckling load and mode shape of the piles as affected by the self-weight, embedment ratio, slenderness ratio and boundary condition of the pile as well as the aspect ratio and rigidity ratio of the subgrade reaction. It is found that the self-weight of the pile leads to the reduction of the buckling load, indicating that neglecting the effect of self-weight may overestimate the buckling load of partially embedded piles.

Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space (3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법)

  • Jae-Sang Jung;Changhoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2024
  • In this study, we introduce a linear spectral method capable of simulating wave generation and transformation caused by a moving bottom in a 3-dimensional space. The governing equations are linear dynamic free-surface boundary conditions and linear kinematic free-surface boundary conditions, which are solved in Fourier space. Solved velocity potential and free-surface displacement should satisfy continuity equation and kinematic bottom boundary condition. For numerical analysis, a 4th order Runge-Kutta method was utilized to analyze the time integral. The results obtained in Fourier space can be converted into velocity potential and free-surface displacement in a real space using inverse Fourier transform. Regular waves generated by various types of moving bottoms were simulated with the linear spectral method. Additionally, obliquely generated regular waves using specified bottom movements were simulated. The results obtained from the spectral method were compared to analytical solutions, showing good agreement between the two.

A Dynamic Analysis of PSC Box Bridge Varying Span Lengths for Increased Speeds of KTX (고속철 속도변화에 대한 PSC박스 교량의 경간길이 별 동적해석)

  • Oh, Soon Taek;Lee, Dong Jun;Shim, Young Woo;Yun, Jun Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.204-211
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of bridge during the passage of high speed railway vehicles. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyse accurately and evaluate with in-depth parametric studies for dynamic responses of various bridge span lengths running KTX railway locomotive up to increasing maximum speed(450km/h). Three dimensional frame element is used to model the simply supported pre-stressed concrete (PSC) box bridges for four span lengths(40~25m). Track irregularity employed as a stationary random process from the given spectral density functions and irregularities of both sides of the track are assumed to have high correlation. The high-speed railway vehicle (KTX) is used as 38-degree of freedom system. Three displacements (Vertical, lateral, and longitudinal) as well as three rotational components (Pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic amplification factors are evaluated by the developed procedure under various traveling conditions, such as track irregularity camber, train speed and ballast. The dynamic analysis such as Newmark-${\beta}$ and Runge-Kutta methods which are able to analyse considering the dynamic impact factors are compared and contrasted.