• 제목/요약/키워드: Kruppel-like factor 10 (KLF10)

검색결과 17건 처리시간 0.025초

Upregulation of Kruppel-like Factor 4 Gene expression by Allomyrina dichotoma Hemolymph in the INS-1 Pancreatic β-cells

  • Kwon, Kisang;Suh, Hyun-Woo;Kim, Hong Geun;Kwon, O-Yu
    • 대한의생명과학회지
    • /
    • 제26권1호
    • /
    • pp.37-41
    • /
    • 2020
  • The hemolymph of Korean rhinoceros Allomyrina dichotoma consists of blood and lymph in which various kinds of proteins function physiologically. We have previously demonstrated that A. dichotoma hemolymph has the potential to treatment and prevent diabetes through activating transcription factor 3-gene (ATF3) regulation. In this study, we investigate the expression of Kruppel-like factor 4 (KLF4) in A. dichotoma hemolymph-treated INS-1 pancreatic β-cells. The new findings show that A. dichotoma hemolymph, which upregulates KLF4 gene expression in a dose-dependent and time-dependent manner. In addition, hemolymph combine with mild endoplasmic reticulum (ER) stress, which also differentially regulates KLF4 gene expression. These results may provide insights to KLF4 gene-related disease therapies through KLF4 gene regulation.

Zebrafish Klf11b is Required to Maintain Cell Viability by Inhibiting p53-Mediated Apoptosis

  • Kong, Hee Jeong;Lee, Jung Jin;Kim, Ju-Won;Kim, Julan;Kim, Young-Ok;Yeo, Sang-Yeob
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권2호
    • /
    • pp.79-90
    • /
    • 2022
  • Krüppel-like factor 10 (KLF10) regulates various cellular functions, such as proliferation, differentiation and apoptosis, as well as the homeostasis of several types of tissue. In the present study, we attempted a loss-of-function analysis of zebrafish Klf11a and Klf11b, which constitute human KLF10 homologs. Embryos injected with klf11b-morpholino (MO) showed developmental retardation and cell death, whereas klf11a-MO-injected embryos showed normal development. In klf11b-MO-injected embryos, a dramatic increase in the amount of zebrafish p53 mRNA might be the cause of the increase in that of bax. The degree of apoptosis decreased in the klf11b-MO and p53-MO co-injected embryos. These findings imply that KLF10 is a negative regulator of p53-dependent transcription, suggesting that the KLF10/p53 complex may play an important role in apoptosis for maintenance of tissue homeostasis during embryonic development.

TT Mutant Homozygote of Kruppel-like Factor 5 Is a Key Factor for Increasing Basal Metabolic Rate and Resting Metabolic Rate in Korean Elementary School Children

  • Choi, Jung Ran;Kwon, In-Su;Kwon, Dae Young;Kim, Myung-Sunny;Lee, Myoungsook
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.263-271
    • /
    • 2013
  • We investigated the contribution of genetic variations of KLF5 to basal metabolic rate (BMR) and resting metabolic rate (RMR) and the inhibition of obesity in Korean children. A variation of KLF5 (rs3782933) was genotyped in 62 Korean children. Using multiple linear regression analysis, we developed a model to predict BMR in children. We divided them into several groups; normal versus overweight by body mass index (BMI) and low BMR versus high BMR by BMR. There were no differences in the distributions of alleles and genotypes between each group. The genetic variation of KLF5 gene showed a significant correlation with several clinical factors, such as BMR, muscle, low-density lipoprotein cholesterol, and insulin. Children with the TT had significantly higher BMR than those with CC (p=0.030). The highest muscle was observed in the children with TT compared with CC (p=0.032). The insulin and C-peptide values were higher in children with TT than those with CC (p=0.029 vs. p=0.004, respectively). In linear regression analysis, BMI and muscle mass were correlated with BMR, whereas insulin and C-peptide were not associated with BMR. In the high-BMR group, we observed that higher muscle, fat mass, and C-peptide affect the increase of BMR in children with TT (p < 0.001, p < 0.001, and p=0.018, respectively), while Rohrer's index could explain the usual decrease in BMR (adjust $r^2$=1.000, p < 0.001, respectively). We identified a novel association between TT of KLF5 rs3782933 and BMR in Korean children. We could make better use of the variation within KLF5 in a future clinical intervention study of obesity.

The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.469-474
    • /
    • 2019
  • Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of $NF-{\kappa}B$. Although the $NF-{\kappa}B$ pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis.

Emerging Roles of Krüppel-Like Factor 4 in Cancer and Cancer Stem Cells

  • Ding, Bo;Liu, Ping;Liu, Wen;Sun, Ping;Wang, Chun-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3629-3633
    • /
    • 2015
  • Cancer stem cells (CSCs) are rare subpopulations within tumors which are recognized as culprits in cancer recurrence, drug resistance and metastasis. However, the molecular mechanisms of how CSCs are regulated remain elusive. Kr$\ddot{u}$ppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverse functions in cell differentiation, proliferation, embryogenesis and pluripotency. Recent progress has highlighted the significance of KLFs, especially KLF4, in cancer and CSCs. Therefore, for better therapeutics of cancer disease, it is crucial to develop a deeper understanding of the mechanisms of how KLF4 regulate CSC functions. Herein we summarized the current understanding of the transcriptional regulation of K LF4 in CSCs, and discussed the functional implications of targeting CSCs for potential cancer therapeutics.

Akt에 의한 근육세포의 분화 조절 (Regulation of Skeletal Muscle Differentiation by Akt)

  • 우대한;윤성지;김은경;하정민;신화경;배순식
    • 생명과학회지
    • /
    • 제22권4호
    • /
    • pp.447-455
    • /
    • 2012
  • Akt는 다양한 세포에서 성장, 발달, 증식, 분화와 같은 생리적 활성에 중요한 역할을 하고 골격근 세포에서 Akt는 재생 및 비대와 위축을 조절한다고 알려져 있다. 골격근 세포의 분화에 있어서 Akt의 역할을 밝히고자 본 연구를 수행하였다. 골격근 세포를 분화 시키기 위해 고밀도 및 저농도의 serum 상태에서 배양하며, 분화된 C2C12 근아세포는 둥근 모양에서 다핵을 가진 긴 모양으로 바뀐다. 이러한 형태학적 변화는 분화 시킨 후 2일부터 일어났다. 또한, 골격근 분화 표지인자인 myogenin D와 myogenin G의 발현은 2일 후 관찰되었다. C2C12 세포주에 Akt1 또는 Akt2의 발현을 저하시키면 이와 더불어 골격근으로의 분화도 저해됨을 확인하였고, 이와는 반대로 Akt1 또는 Akt2를 과발현 시키면 골격근으로 분화가 촉진됨을 알 수 있었다. 이와 더불어 Akt의 활성은 분화유도 2일 후부터 관찰되었고 7일 이후로는 감소하였다. Kruppel-like factor 4의 발현은 6일부터 증가하는 것이 관찰이 되었다. Kruppel-like factor 4의 발현 또한 Akt1 또는 Akt2의 발현양이 감소된 C2C12 근아세포에서 줄어들어 있는 것을 확인하였다. 또한 Kruppel-like factor 4의 프로모터 부위에 대한 전사조절능력이 Akt1 또는 Akt2의 발현을 저하시켰을 때 같이 떨어짐을 확인하였다. 이러한 결과들로 보아 Akt가 골격근 분화를 조절하는데 있어 중요하며, Kruppel-like factor 4 발현이 이를 조절하는 데 있어 중요한 역할을 할 것이라 판단된다.

LINC01232 Promotes Gastric Cancer Proliferation through Interacting with EZH2 to Inhibit the Transcription of KLF2

  • Liu, Jing;Li, Zhen;Yu, Guohua;Wang, Ting;Qu, Guimei;Wang, Yunhui
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1358-1365
    • /
    • 2021
  • To clarify the role of long intergenic nonprotein-coding RNA 1232 (LINC01232) in the progression of gastric cancer and the potential mechanism, we analyzed the expression of LINC01232 in TCGA database using the GEPIA online tool, and the LINC01232 level in gastric cancer cell lines was detected by quantitative real time-polymerase chain reaction (qRT-PCR) as well. Cell proliferation assay, colony formation assay, transwell assay and tumor formation experiment in nude mice were conducted to observe the biological behavior changes of gastric cancer cells through the influence of LINC01232 knockdown. LncATLAS database and subcellular isolation assay were used for subcellular distribution of LINC01232 in gastric cancer cells. The interaction among LINC01232, zeste homolog 2 (EZH2) and kruppel-like factor 2 (KLF2) was clarified by RNA-protein interaction prediction (RPISeq), RNA immunoprecipitation (RIP), qRT-PCR and chromatin immunoprecipitation (ChIP) assay. Rescue experiments were further conducted to elucidate the biological function of LINC01232/KLF2 axis in the progression of gastric cancer. LINC01232 was upregulated in stomach adenocarcinoma (STAD) tissues and gastric cancer lines. LINC01232 knockdown inhibited the proliferative capacities of gastric cancer cells in vitro, and impaired in vivo tumorigenicity. LINC01232 was mainly distributed in the cell nucleus where it epigenetically repressed KLF2 expression via binding to the enhancer of EZH2, which was capable of binding to promoter regions of KLF2 to induce histone H3 lysine 27 trimethylation (H3K27me3). LINC01232 exerts oncogenic activities in gastric cancer via inhibition of KLF2, and therefore, the knockdown of KLF2 could reverse the regulatory effect of LINC01232 in the proliferative ability of gastric cancer cells.

LINC00703 Acts as a Tumor Suppressor via Regulating miR-181a/KLF6 Axis in Gastric Cancer

  • Yang, Haiyang;Peng, Minqi;Li, Yanjiao;Zhu, Renjie;Li, Xiang;Qian, Zhengjiang
    • Journal of Gastric Cancer
    • /
    • 제19권4호
    • /
    • pp.460-472
    • /
    • 2019
  • Purpose: Long noncoding RNA 00703 (LINC00703) was found originating from a region downstream of Kruppel-like factor 6 (KLF6) gene, having 2 binding sites for miR-181a. Since KLF6 has been reported as a target of miR-181a in gastric cancer (GC), this study aims to investigate whether LINC00703 regulates the miR-181a/KLF6 axis and plays a functional role in GC pathogenesis. Materials and Methods: GC tissues, cell lines, and nude mice were included in this study. RNA binding protein immunoprecipitation (RIP) and pull-down assays were used to evaluate interaction between LINC00703 and miR-181a. Quantitative real-time polymerase chain reaction and western blot were applied for analysis of gene expression at the transcriptional and protein levels. A nude xenograft mouse model was used to determine LINC00703 function in vivo. Results: We revealed that LINC00703 competitively interacts with miR-181a to regulate KLF6. Overexpression of LINC00703 inhibited cell proliferation, migration/invasion, but promoted apoptosis in vitro, and arrested tumor growth in vivo. LINC00703 expression was found to be decreased in GC tissues, which was positively correlated with KLF6, but negatively with the miR-181a levels. Conclusions: LINC00703 may have an anti-cancer function via modulation of the miR-181a/KLF6 axis. This study also provides a new potential diagnostic marker and therapeutic target for GC treatment.

LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway

  • Ding, Yaodong;Ge, Yu;Wang, Daijun;Liu, Qin;Sun, Shuchen;Hua, Lingyang;Deng, Jiaojiao;Luan, Shihai;Cheng, Haixia;Xie, Qing;Gong, Ye;Zhang, Tao
    • Molecules and Cells
    • /
    • 제45권6호
    • /
    • pp.388-402
    • /
    • 2022
  • Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.