Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.9.3629

Emerging Roles of Krüppel-Like Factor 4 in Cancer and Cancer Stem Cells  

Ding, Bo (Department of Orthodontics, School of Stomatology, Shandong University)
Liu, Ping (Department of Orthodontics, Jinan Stomatological Hospital)
Liu, Wen (Department of Stomatology, Qingdao Municipal Hospital)
Sun, Ping (Obstetrical Department, Qingdao Central Hospital)
Wang, Chun-Ling (Department of Orthodontics, School of Stomatology, Shandong University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.9, 2015 , pp. 3629-3633 More about this Journal
Abstract
Cancer stem cells (CSCs) are rare subpopulations within tumors which are recognized as culprits in cancer recurrence, drug resistance and metastasis. However, the molecular mechanisms of how CSCs are regulated remain elusive. Kr$\ddot{u}$ppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverse functions in cell differentiation, proliferation, embryogenesis and pluripotency. Recent progress has highlighted the significance of KLFs, especially KLF4, in cancer and CSCs. Therefore, for better therapeutics of cancer disease, it is crucial to develop a deeper understanding of the mechanisms of how KLF4 regulate CSC functions. Herein we summarized the current understanding of the transcriptional regulation of K LF4 in CSCs, and discussed the functional implications of targeting CSCs for potential cancer therapeutics.
Keywords
Kruppel-like factor 4; cancer; cancer stem cells; cancer therapy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Baccelli I, Trump A (2012). The evolving concept of cancer and metastasis stem cells. J Cell Biol, 198, 281-93.   DOI
2 Cabarcas SM, Mathews LA, Farrar WL (2011). The cancer stem cell niche--there goes the neighborhood. Int J Cancer, 129, 2315-27.   DOI
3 Chen C, Benjamin MS, Sun X, et al (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer, 118, 1346-55.   DOI
4 Chen J, Li Y, Yu TS, et al (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 488, 522-6.   DOI
5 Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol, 127, 2021-36.   DOI
6 Miller IJ, Bieker JJ (1993). A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol, 13, 2776-86.   DOI
7 Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012). Cancer stem cells: an evolving concept. Nat Rev Cancer, 12, 133-43.
8 Nishi M, Sakai Y, Akutsu H, et al (2013). Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene, 33, 643-52.
9 Okuda H, Xing F, Pandey PR, et al (2013). miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res, 73, 1434-44.   DOI
10 Oskarsson T (2013). Extracellular matrix components in breast cancer progression and metastasis. Breast, 22, 66-72.   DOI
11 Reya T, Morrison SJ, Clarke MF, Weissman IL (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105-11.   DOI
12 Sabet MN, Rakhshan A, Erfani E, Madjd Z (2014). Co-expression of putative cancer stem cell markers, CD133 and Nestin, in skin tumors. Asian Pac J Cancer Prev, 15, 8161-9.   DOI
13 Sarig R, Rivlin N, Brosh R, et al (2010). Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med, 207, 2127-40.   DOI
14 Schepers AG, Snippert HJ, Stange DE, et al (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337, 730-5.   DOI
15 Dang DT, Chen X, Feng J, et al (2003). Overexpression of kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene, 22, 3424-30.   DOI
16 Choi BJ, Cho YG, Song JW, et al (2006). Altered expression of the KLF4 in colorectal cancers. Pathol Res Pract, 202, 585-9.   DOI
17 Clarke MF, Dick JE, Dirks PB, et al (2006). Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 66, 9339-44.   DOI
18 Dalerba P, Cho RW, Clarke MF (2007). Cancer stem cells: models and concepts. Annu Rev Med, 58, 267-84.   DOI
19 Dean M, Fojo T, Bates S (2005). Tumour stem cells and drug resistance. Nat Rev Cancer, 5, 275-84.   DOI
20 Dong Z, Yang L, Lai D (2013). KLF5 strengthens drug resistance of ovarian cancer stem-like cells by regulating survivin expression. Cell Prolif, 46, 425-35.   DOI
21 Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012). Defining the mode of tumour growth by clonal analysis. Nature, 488, 527-30.   DOI
22 Eaton SA, Funnell AP, Sue N, et al (2008). A network of kruppellike factors (Klfs).. Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem, 283, 26937-47.   DOI
23 Garvey SM, Sinden DS, Schoppee BPD, Wamhoff BR (2010). Cyclosporine up-regulates Kruppel-like factor-4 (KLF4). in vascular smooth muscle cells and drives phenotypic modulation in vivo. J Pharmacol Exp Ther, 333, 34-42.   DOI
24 Gilbertson RJ, Graham TA (2012). Cancer: Resolving the stemcell debate. Nature, 488, 462-3.   DOI
25 Vaira V, Faversani A, Martin NM, et al (2013). Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res, 73, 2695-705.   DOI
26 Siegel R, Ma J, Zou Z, Jemal A (2014). Cancer Statistics, 2014. CA Cancer J Clin, 64, 104-17.   DOI   ScienceOn
27 Tang DG (2012). Understanding cancer stem cell heterogeneity and plasticity. Cell Res, 22, 457-72.   DOI
28 Tetreault MP, Yang Y, Katz JP (2013). Kruppel-like factors in cancer. Nat Rev Cancer, 13, 701-13.   DOI
29 Visvader JE, Lindeman GJ (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 8, 755-68.   DOI
30 Wang H, Yang L, Jamaluddin MS, Boyd DD (2004). The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem, 279, 22674-83.   DOI
31 Wang X, Lu H, Li T, et al (2013). Kruppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res, 3, 356-73.
32 Wang X, Zhao J (2007). KLF8 transcription factor participates in oncogenic transformation. Oncogene, 26, 456-61.   DOI
33 Wang X, Zheng M, Liu G, et al (2007). Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res, 67, 7184-93.   DOI
34 Wellner U, Schubert J, Burk UC, et al (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemnessinhibiting microRNAs. Nat Cell Biol, 11, 1487-95.   DOI
35 Yamanaka S (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39-49.   DOI
36 Wernig M, Meissner A, Foreman R, et al (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318-24.   DOI
37 Wong CW, Hou PS, Tseng SF, et al (2010). Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells, 28, 1510-7.   DOI
38 Wu XQ, Huang C, He X, et al (2013). Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal, 25, 2462-8.   DOI
39 Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 14, 818-29.   DOI   ScienceOn
40 Ying M, Sang Y, Li Y, et al (2011). Kruppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells, 29, 20-31.   DOI
41 Yori JL, Johnson E, Zhou G, Jain MK, Keri RA (2010). Kruppellike factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem, 285, 16854-63.   DOI
42 Yori JL, Seachrist DD, Johnson E, et al (2011). Kruppel-like factor 4 inhibits tumorigenic progression and metastasis in a mouse model of breast cancer. Neoplasia, 13, 601-10.   DOI
43 Yu F, Li J, Chen H, et al (2011). Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene, 30, 2161-72.   DOI
44 Keymoosi H, Gheytanchi E, Asgari M, Shariftabrizi A, Madjd Z (2014). ALDH1 in combination with CD44 as putative cancer stem cell markers are correlated with poor prognosis in urothelial carcinoma of the urinary bladder. Asian Pac J Cancer Prev, 15, 2013-20.   DOI   ScienceOn
45 Yu T, Chen X, Zhang W, et al (2012). Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem, 287, 3760-8.   DOI
46 Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013). Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene, 32, 2249-60.   DOI
47 Zheng H, Pritchard DM, Yang X, et al (2009). KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol, 296, 490-8.   DOI
48 Hao J, Zhang Y, Deng M, et al (2014). MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer, 135, 1019-27.   DOI
49 Ho A, Fusenig N (2011). Cancer stem cells: a promising concept and therapeutic challenge. Int J Cancer, 129, 2309.   DOI
50 King KE, Iyemere VP, Weissberg PL, Shanahan CM (2003). Kruppel-like factor 4 (KLF4/GKLF). is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem, 278, 11661-9.   DOI
51 Kreso A, Dick JE (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14, 275-291.   DOI
52 Lapidot T, Sirard C, Vormoor J, et al (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645-8.   DOI   ScienceOn
53 Leng Z, Tao K, Xia Q, et al (2013). Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One, 8, 56082.   DOI
54 Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2013). Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett, 338, 94-100.   DOI
55 Magee JA, Piskounova E, Morrison SJ (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283-96.   DOI
56 McConnell BB, Yang VW (2010). Mammalian Kruppel-like factors in health and diseases. Physiol Rev, 90, 1337-81.   DOI