• Title/Summary/Keyword: Kronecker function ring

Search Result 6, Processing Time 0.023 seconds

THE KRONECKER FUNCTION RING OF THE RING D[X]N*

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.907-913
    • /
    • 2010
  • Let D be an integrally closed domain with quotient field K, * be a star operation on D, X, Y be indeterminates over D, $N_*\;=\;\{f\;{\in}\;D[X]|\;(c_D(f))^*\;=\;D\}$ and $R\;=\;D[X]_{N_*}$. Let b be the b-operation on R, and let $*_c$ be the star operation on D defined by $I^{*_c}\;=\;(ID[X]_{N_*})^b\;{\cap}\;K$. Finally, let Kr(R, b) (resp., Kr(D, $*_c$)) be the Kronecker function ring of R (resp., D) with respect to Y (resp., X, Y). In this paper, we show that Kr(R, b) $\subseteq$ Kr(D, $*_c$) and Kr(R, b) is a kfr with respect to K(Y) and X in the notion of [2]. We also prove that Kr(R, b) = Kr(D, $*_c$) if and only if D is a $P{\ast}MD$. As a corollary, we have that if D is not a $P{\ast}MD$, then Kr(R, b) is an example of a kfr with respect to K(Y) and X but not a Kronecker function ring with respect to K(Y) and X.

CHARACTERIZATIONS OF GRADED PRÜFER ⋆-MULTIPLICATION DOMAINS

  • Sahandi, Parviz
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.181-206
    • /
    • 2014
  • Let $R={\bigoplus}_{\alpha{\in}\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid ${\Gamma}$, and ⋆ be a semistar operation on R. In this paper we define and study the graded integral domain analogue of ⋆-Nagata and Kronecker function rings of R with respect to ⋆. We say that R is a graded Pr$\ddot{u}$fer ⋆-multiplication domain if each nonzero finitely generated homogeneous ideal of R is ⋆$_f$-invertible. Using ⋆-Nagata and Kronecker function rings, we give several different equivalent conditions for R to be a graded Pr$\ddot{u}$fer ⋆-multiplication domain. In particular we give new characterizations for a graded integral domain, to be a $P{\upsilon}MD$.

OVERRINGS OF THE KRONECKER FUNCTION RING Kr(D, *) OF A PRUFER *-MULTIPLICATION DOMAIN D

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1013-1018
    • /
    • 2009
  • Let * be an e.a.b. star operation on an integrally closed domain D, and let $K\gamma$(D, *) be the Kronecker function ring of D. We show that if D is a P*MD, then the mapping $D_{\alpha}{\mapsto}K{\gamma}(D_{\alpha},\;{\upsilon})$ is a bijection from the set {$D_{\alpha}$} of *-linked overrings of D into the set of overrings of $K{\gamma}(D,\;{\upsilon})$. This is a generalization of [5, Proposition 32.19] that if D is a Pr$\ddot{u}$fer domain, then the mapping $D_{\alpha}{\mapsto}K_{\gamma}(D_{\alpha},\;b)$ is a one-to-one mapping from the set {$D_{\alpha}$} of overrings of D onto the set of overrings of $K_{\gamma}$(D, b).

ARTIN SYMBOLS OVER IMAGINARY QUADRATIC FIELDS

  • Dong Sung Yoon
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.95-107
    • /
    • 2024
  • Let K be an imaginary quadratic field with ring of integers 𝓞K and N be a positive integer. By K(N) we mean the ray class field of K modulo N𝓞K. In this paper, for each prime p of K relatively prime to N𝓞K we explicitly describe the action of the Artin symbol (${\frac{K_{(N)}/K}{p}}$) on special values of modular functions of level N. Furthermore, we extend the Kronecker congruence relation for the elliptic modular function j to some modular functions of higher level.

KRONECKER FUNCTION RINGS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.371-379
    • /
    • 2012
  • Let D be an integral domain, $\bar{D}$ be the integral closure of D, * be a star operation of finite character on D, $*_w$ be the so-called $*_w$-operation on D induced by *, X be an indeterminate over D, $N_*=\{f{\in}D[X]{\mid}c(f)^*=D\}$, and $Kr(D,*)=\{0\}{\cup}\{\frac{f}{g}{\mid}0{\neq}f,\;g{\in}D[X]$ and there is an $0{\neq}h{\in}D[X]$ such that $(c(f)c(h))^*{\subseteq}(c(g)c(h))^*$}. In this paper, we show that D is a *-quasi-Pr$\ddot{u}$fer domain if and only if $\bar{D}[X]_{N_*}=Kr(D,*_w)$. As a corollary, we recover Fontana-Jara-Santos's result that D is a Pr$\ddot{u}$fer *-multiplication domain if and only if $D[X]_{N_*} = Kr(D,*_w)$.

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.