• Title/Summary/Keyword: Korean surface temperature

Search Result 12,774, Processing Time 0.042 seconds

Study on Cultural Method of Summer Buckwheat Planted in Spring (여름메밀의 춘파재배법 연구)

  • Keun-Yong Park;Rae-Kyung Park;Byeong-Han Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.2
    • /
    • pp.149-154
    • /
    • 1992
  • Buckwheat has been a popular favorite food crop in Korea for a long time. The objective of the study was to investigate the effects of climatic conditions and cultural methods on grain yields of summer buckwheat variety Sinnong 1 planted during the spring season in Suwon, Korea from 1989 to 1991. Frost minimum temperature of late April was -0.3$^{\circ}C$ in 1990 being very low as compared with 3.7$^{\circ}C$ of the normal year, and affected early growth of the seedlings emerging from the soil surface. In late May of 1990, the frost minimum temperature was 7.3$^{\circ}C$ being low as compared with 8.8$^{\circ}C$ of the normal year, and also induced cold injury to fertilization and grain filling. Total precipitation 374.5mm of mid and late June, 1990 provided serious damage to the grain filling and maturing buckwheat seeds and along with causing seed sprouting before harvest. However, the climates of 1989 and 1991 were very good for the growth and development of spring-sown buckwheats. When summer buckwheat cultivar Sinnong 1 was planted on April 20, 1989, its highest grain yields 268-292kg /10a were harvested from the plots of seeding rate 8kg /10a, drill seeding and polyethylene film mulching, and the mean grain yield of the plots was 238kg /10a in 1989, but 64.3kg in Suwon, and 40.2kg /10a in Muan in 1990. In 1991 maximum grain yield 277kg /10a was produced from the April 15 planted and vinyl-mulched plot, and 255kg /10a from the April 25 planted and non-mulched plot. Herbicide Alachlor-sprayed plots produced lower grain yields than no weed control and manual weeding plots. Mechanized drill-seeding saved 83~84% in planting hours as compared with manual broadcasting 21.6 hours /ha, and produced 9% more in grain yields from the two-season croppings of mechanized drill-seeding culture being 364kg /10a in total yields per year.

  • PDF

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Seongsan Dickite Deposits, Korea; Estimation of Ore - Forming Temperature and aNa+/aK+ Ratio of the Hydrothermal Fluid (성산딕카이트광상에서의 백악기산성마그마티즘에 관련된 열수변질작용 ; 광상형성온도의 측정 및 열수용액의 aNa+/aK+)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.259-273
    • /
    • 1992
  • The Seongsan mine is one of the largest dickite deposits in the southwestern part of the Korean Peninsula. The main constithent minerals of the ore are dickite and quartz with accessory alunite, kaolinite and sericite. The geology around the Seongsan mine consists mainly of the late Cretaceous felsic volcanic rocks. In the studied area, these rocks make a synclinal structure with an axis of E-W direction plunging to the east. Most of the felsic volcanic rocks have undergone extensive hydrothermal alteration. The hydrothermally altered rocks can be classified into the following zones: Dickite, Dickite-Quartz, Quartz, Sericite, Albite and Chlorite zones, from the center to the margin of the alteration mass. Such zonal arrangement of altered rocks suggests that the country rocks, most of which are upper part of the rhyolite and welded tuff, were altered by strongly acid hydrothermal solutions. It is reasonable to consider that initial gas and solution containing $H_2S$ and other compounds were oxidized near the surface, and formed hydrothermal sulfuric acid solutions. The mineralogical and chemical changes of the altered rocks were investigated using various methods, and chemical composition of fifty-six samples of the altered rocks were obtained by wet chemical analysis and X.R.F. methods. On the basis of these analyses, it was found that some components such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO, MgO, $K_2O$, $Na_2O$ and $TiO_2$ were mobilized considerably from the original rocks. The formation temperature of the deposits was estimated as higher than $200^{\circ}C$ from fluid inclusion study of samples taken from the Quartz zone. On the basis of the chemical composition data on rocks and minerals and estimated temperatures, the hydrothermal solutions responsible for the formation of the Seongsan dickite deposits were estimated to have the composition: $m_{K^+}=0.003$, $m_{Na^+}=0.097$, $m_{SiO_2(aq.)}=0.008$ and pH=5.0, here "m" represents the molality (mole/kg $H_2O$).

  • PDF

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

Production and CO2 Adsorption Characteristics of Activated Carbon from Bamboo by CO2 Activation Method (CO2 활성화법에 의한 대나무 활성탄 제조와 CO2 흡착 특성)

  • Bak, Young-Cheol;Cho, Kwang-Ju;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.146-152
    • /
    • 2005
  • The activated carbon was produced from Sancheong bamboo by carbon dioxide gas activation methods. The carbonization of raw material was conducted at $900^{\circ}C$, and $CO_2$ activation reactions were conducted under various conditions: activation temperatures of $750-900^{\circ}C$, flow rates of carbon dioxide $5-30cm^3/g-char{\cdot}min$, and activation time of 2-5 h. The yield, adsorption capacity of iodine and methylene blue, specific surface area and pore size distribution of the prepared activated carbons were measured. The adsorption capacity of iodine (680.8-1450.1 mg/g) and methylene blue (23.5-220 mg/g) increased with increasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the $CO_2$ gas quantity in the range of $5-18.9cm^3/g-char{\cdot}min$. But those decreased over those range due to the pore shrinkage. The specific volume of the mesopore and macropore of bamboo activated carbon were $0.65-0.91cm^3/g$. Because of this large specific volume, it can be used to the biological activated carbon process. Bamboo activated carbon phisically adsorbed the $CO_2$ of maximum 106 mg/g-A.C in the condition of 90% $CO_2$ and adsorption temperature of $20^{\circ}C$. The $CO_2$ adsorption ability of bamboo activated carbon was not changed in the 5 cyclic test of desorption and adsorption.

Change of Particle Size of Magnesium Silicate According to Reaction Conditions and Evaluation of Its Polyol Purification Ability (반응 조건에 따른 규산마그네슘의 입도 변화 및 폴리올 정제 능력평가)

  • Yoo, Jhongryul;Jeong, Hongin;Kang, Donggyun;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • The efficiency of the synthetic magnesium silicate used in basic polyols and edible oil purification is evaluated by its purification ability and filtration rate and is affected by the particle size and surface area of magnesium silicate. In this study, it was investigated the change on the particle size of magnesium silicate was influenced by the reaction temperature, injection rate, injection order (Si, Mg) and Mg/Si reaction mole ratio. The synthesized magnesium silicate was compared and analyzed for the synthesis, grinding, and refining processes. In the synthesis process, the reaction temperature and feed rate did not affect the average particle size change of magnesium silicate, while the reaction molar ratio of Mg / Si and the order of injection acted as main factors for the change of average particle size. The average particle size of magnesium silicate increased by 8.7 ㎛ from 54.4 ㎛ to 63.1 ㎛ at Mg injection when Mg molar ratio increased from 0.125 to 0.500, and increased by about 4.8 ㎛ from 47.3 ㎛ to 52.1 ㎛ at Si injection. The average particle size according to the order of injection was 59.1 ㎛ for Mg injection and 48.4 ㎛ for Si injection and the difference was shown 10.7 ㎛, therefore the filtration rate was about 2 times faster under the condition of Mg injection. That is, as the particle size increases, the filtration time is shortened and washing filtration rate can be increased to improve the productivity of magnesium silicate. The cake form of separated magnesium silicate after filtration becomes a solid through drying process and is used as powdery adsorbent through the grinding process. As the physical strength of the dried magnesium silicate increased, the average particle size of the powder increased and it was confirmed that this strength was affected by the reaction molar ratio. As the reaction molar ratio of Mg / Si increased, the physical strength of magnesium silicate decreased and the average particle size after grinding decreased by about 40% compared to the average particle size after synthesis. This reduction of strength resulted in an improvement of the refining ability due to the decrease of the average particle size and the increase of the amount of fine particle after the pulverization, but it resulted in the decrease of the purification filtration rate. While the molar ratio of Mg/Si was increased from 0.125 to 0.5 at Mg injection, the refining ability increased about 1.3 times, but the purification filtration rate decreased about 1.5 times. Therefore, in order to improve the productivity of magnesium silicate, the reaction molar ratio of Mg / Si should be increased, but in order to increase the purification filtration rate of the polyol, the reaction molar ratio should be decreased. In the synthesis parameters of magnesium silicate, the order of injection and the reaction molar ratio of Mg / Si are important factors affecting the changes in average particle size after synthesis and the changes of particle size after grinding due to the changes of compressive strength, therefore the synthetic parameter is an important thing that determines productivity and refining capacity.

Cooling Properties and Quality Changes during Storage of Citron (Citrus junos) (유자의 냉각특성 및 저장중 품질변화)

  • Jeong, Jin-Woong;Lee, Young-Chul;Kim, Jong-Hoon;Kim, Oni-Woung;Nahmgung, Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1071-1077
    • /
    • 1996
  • Quality changes in citron (Citrus junos) during storage were studied to investigate the efficiency, cooling properties and the washing and storage effects of hydrocooling method. As a result of plotting the nondimensionalized citron temperature versus cooling time, its cooling rate coefficient was shown to be $-0.012\;min^4{\sim}\;-0.017\;min^4\;(R^2=0.97{\sim}0.99)$ at center, and to be $-0.033\;min^4{\sim}\;0.075\;min^4\;(R^2=0.89{\sim}0.93)$ at surface. During storage, weight loss was more affected by storage temperature than by pretreatment condition and in reached $22{\sim}23%$ after 7 weeks at $15^{\circ}C\;and\;10{\sim}11%$ after 8 weeks at $5^{\circ}C$ in all samples. However, changes in moisture contents of hydrocooled citron were shown to be about $1{\sim}2%$ after 7 weeks while that of non-treated citron was about 3% after 1 week of storage at $5^{\circ}C$. And the change of pH, acidity and soluble solid content were not significantly different between each treatments during storage $5^{\circ}C\;and\;15^{\circ}C$. Changes in Hunter L, a, and b values of hydrocooled citron were lower than those of non-treated one as the storage time increased. The respiration rate of hydrocooled citron during storage at $15^{\circ}C$ was $103.63\;mg{\cdot}CO_2/kg{\cdot}hr$, which is about 50% of that of non-treated citron.

  • PDF

High Density Tilapia Culture in a Recirculating Water System without Filter Bed (무여과순환수 탱크 이용 Tilapia의 고밀도 사육실험)

  • KIM In-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.59-67
    • /
    • 1983
  • An experiment on the rearing of tilapia stocked in closed recirculating tanks eliminating biological filter beds was carried out at the Fish Culture Experiment Station of the National Fisheries University of Pusan, from May 18 through October 21, 1982, and the growth rates, feed conversion, water quality, spawning prevention and space utilization efficiency were discussed. Finally discussed is the feasibility on the establishment of commercial production units. On the water quality, the water temperature ranged from $22.8^{\circ}C\;to\;29.1^{\circ}C$, and total ammonia arround 10 ppm or slightly up. Maintaining phytoplankton bloom was not successful probably because of the active consumption by the heavily stocked tilapia. Several attempts were made by changing the culture water with green water from a nearby earthen pond with results of fading-away in a couple of days. Feed conversions were relatively high ranging from 0.9 to 1.2 except for experiment 1 when the fish were not fully recovered from weakened wintering state. The feed used was partly laboratory prepared $25\%$ protein diet and mostly commercially available $39\%$ protein carp feed. Spawning was completely controlled during the experiment, resulting from density effect, which ranged from 10kg to 40.7kg per square meter with water depth of 0.5 to 0.6m. Space utilization efficiency was very high. Daily net production from the experiment division 3, which showed the highest result, was 6.206 kg per tank, which is calculated 3,235 metric tons per hectare per year, This time, water temperature ranged from 27.8 to $29.1^{circ}C$, average being $28.4^{circ}C$, and total ammonia arround 10 ppm. An estimation for the commercial set-up of the production system based on the results of experiment divisions which had initial stocking rate $15\;kg/m^2$ or up, is made. If the total facility, 8 tanks comprising $56\;m^2$ in surface area, is used for the present study, the yield would become 5,639 kg from 200 day rearing, which would be possible under double sheets vinyl house without additional heating, and it is thought feasible in the economic view point, when 10 or more units are operated.

  • PDF

Ti-Getter Effects on Magnetic Properties of Ti0.96Co0.02Fe0.02O2 (Ti-Getter가 Ti0.96Co0.02Fe0.02O2의 자기적 특성에 미치는 영향)

  • Nam, H.D.;Kim, S.J.;Baek, J.K.;Lee, S.R.;Park, Cheol-Su;Kim, E.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2008
  • The samples were synthesized by using a solid state reaction. The X-ray diffraction pattern for $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ showed a pure rutile phase with tetragonal structure, Mixtures of the proper proportions of the elements sealed in evacuated quartz ampoule were heated at $870{\sim}930^{\circ}C$ for one day and then slowly cooled down to room temperature at a rate of $10^{\circ}C$/h. In order to obtain single phase material, it was necessary to grind the sample after the first firing and to press the powders into pellets before annealing them for a second time in evacuated and sealed quartz ampoule. Magnetic properties have been investigated using the vibrating sample magnetometer (VSM). Room temperature magnetic hysteresis (M-H) curve showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $1.5\;{\mu}_B$/CoFe. But the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $0.02\;{\mu}_B$/CoFe without Ti-getter. Size of particles is about $1\;{\mu}m$ using the transmission electron microscope (TEM). The ingredients of sample are distributed irregular in particles. Only Fe get shown on the surface of particles.

Sprouting Characteristics and Herbicidal Responses of Purple Nutsedge (향부자 괴경의 출아특성과 제초제에 대한 반응)

  • Kim, J.S.;Shin, W.K.;Kim, T.J.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.14 no.2
    • /
    • pp.120-127
    • /
    • 1994
  • To establish an efficient herbicide screening method for purple nutsedge(Cyperus rotundus) control, its sprouting characteristics, tuber production and responses on several herbicides were investigated under greenhouse condition. The tubers stored at $4^{\circ}C$ after sterilization with the diluted prochloraz(Spotac) solution showed higher sprouting than the non-sterilized did. The harvested tubers were not dormant, and the sterilized tubers which stored at low temperature had a sprouting capability of about 80% after 6 months. If the fresh weight of purple nutsedge tubers was decreased to below 48%, they could not sprout. However, the tubers soaked in water and then stored at low temperature could sprout by 88% even 6 months later. Sprouting and initial growth of tuber were much better at $35^{\circ}C$-day/$25^{\circ}C$-night than at 30/$20^{\circ}C$ or 25/$15^{\circ}C$. The half-sected tubers, which were prepared by setting the intact tuber of above 1.2g latitudinally, were shown similar initial growth to the intact but those sected crucifically were not. These results suggest that the half-sected tuber itself can be used as a material on herbicide screening. About 1000 tubers could be harvested when 10 tubers planted in a pot($56{\times}35{\times}16cm$) filled with the artificial soil were cultivated in greenhouse of $35^{\circ}C$-day/$25^{\circ}C$-night for 3 months(April-July, 1993). Chlorimuron, Bentazon and Norflurazon were selected as the standards for the screening because of providing relatively effective control on purple nutsedge in both soil-surface and foliar spray treatment.

  • PDF

Study on Effect of Convection Current Aeration System on Mixing Characteristics and Water Quality of Reservoir (대류식 순환장치의 저수지수체 유동특성 및 수질영향)

  • Lee, Yo-Sang;Lee, Kwang-Man;Koh, Deok-Koo;Yum, Kyung-Taek
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This study examines the operational effectiveness of a Convection Current Aeration System (CCAS) in reservoir. CCAS was run from June, 2008 when the thermocline begun forming in the reservoir. This paper reviews the influence of stratification, dissolved oxygen dynamics and temperature in the lake's natural state from June to October 2008. The survey was done on a week basis. Upwelling flow effects a radius of $7{\sim}10m$ at a surface directly and was irrelevant to the strength of thermocline. On the other hand, it was affected the number of working days, and strength of thermocline at vertical profiles of the reservoir. Longer CCAS run, the deeper was the vertical direct flow area. However it didn't break the thermocline during summer season of 2008. The operating efficiency of the CCAS in the reservoir depends on hydraulics and meteological conditions. Computational Fluid Dynamics (CFD) is a very useful tool for evaluating the operating efficiency of fluid dynamics. The geometry for CFD simulation consists of a cylindrical vessel 25 m radius and 40 m height. The CCAS is located in center of domain. The non-uniform tetrahedral meshes had a bulk of the geometry. The meshes ranged from the coarse to the very fine. This is attributed to the cold water flowing into the downcomer and rising, creating a horizontal flow to the top of the CCAS. The result of CFD demonstrate a closer agreement with surveyed data for temperature and flow velocity. Theoretical dispersion volume were calculated at 8m depth, 120 m diameter working for 30 days and 10 m depth, 130 m diameter working for 50 days.