DOI QR코드

DOI QR Code

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy

단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차

  • Received : 2015.08.28
  • Accepted : 2015.09.15
  • Published : 2015.09.30

Abstract

Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

에디 공분산 방법(eddy covariance method)을 이용한 이산화탄소($CO_2$), 수증기($H_2O$), 현열(sensible heat)의 순생태계과환량[net ecosystem exchange (NEE)]은 에디 플럭스(eddy flux, $F_c$)와 저장 플럭스(storage flux, $F_s$)의 합으로 어림한다. 스칼라의 흡원과 발원의 세기와 분포, 연직 난류 혼합의 정도에 따라 스칼라의 변화율은 높이에 따라 다르게 나타난다. 따라서 정확한 $F_s$를 얻기 위해서는 프로파일 시스템을 운용하여 높이에 따라 달라지는 스칼라의 변화율을 고려하여야 한다. 하지만 아시아의 대부분의 농경지 관측지에서는 프로파일 시스템을 운용하지 않고, $F_c$ 관측 지점과 지면 사이에서 높이와 관계없이 스칼라 변화율이 동일하다는 가정하에 에디 공분산 시스템에서 관측되는 스칼라 변화율 만으로 $F_s$를 산정한다. 본 연구에서는 논에서 에디 공분산 관측 높이에서 측정된 $F_s$(프로파일 시스템에서 관측된 단일 높이의 스칼라만을 이용한 $F_s$, $F_s_{-single}$)와 프로파일 관측(에디 공분산 관측지점과 지면 사이의 여러 높이에서 스칼라 관측)을 이용한 FS와의 차이를 정량화하고, $F_s_{-single}$로 NEE를 산정할 때 발생하는 오차를 확인하기 위해, 경기도 여주에 위치한 청미천 농경지 플럭스 관측지(Chengmicheon Farmland Korea, CFK)에서 에디공분산 방법과 프로파일 시스템을 이용해 $CO_2$, $H_2O$, 기온($T_a$)의 $F_c$$F_s$를 측정하였다. $CO_2$, $H_2O$, $T_a$는 흡원과 발원의 강도와 분포, 대기 경계층의 안정도에 따라 높이별로 변화율이 달랐고, 그 결과 $F_s_{-single}$$F_s$를 과소 또는 과대 평가하였다[특히, 해질 녘과 해 뜰 녘(0430-0800h와 1630-2000h)에 $CO_2$$F_s$를 평균 21% 과소평가]. $F_s_{-single}$로 인해 발생하는 NEE 계산의 오차는 $F_{CO_2}$의 경우, 하루 중 시간에 따라 밤(2030-0400h), 해 질 녘과 해 뜰 녘에 각각 평균적으로 3%, 2%씩 $F_{CO_2}$를 과소평가했다. 이러한 차이는 $F_{CO_2}$의 야간 자료 보정과 분배의 과정에서 논의 탄소수지를 과소평가하게 할 수 있다. 이와는 다르게 LE, H의 경우 시간에 관계없이 거의 차이를 보이지 않았다.

Keywords

References

  1. Aubinet, M., T. Vesala, and D. Papale, 2012: Eddy covariance: a practical guide to measurement and data analysis. Springer Science & Business Media, 10pp.
  2. Baldocchi, D. D., C. A. Vogel, and B. Hall, 1997: Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agricultural and Forest Meteorology 83(1-2), 147-170. https://doi.org/10.1016/S0168-1923(96)02335-0
  3. Campbell, G. S., and J. M. Norman, 1998: Introduction to Environmental Biophysics. Springer Verlag, 95pp.
  4. de Araujo, A. C., A. J. Dolman, M. J. Waterloo, J. H. C. Gash, B. Kruijt, F. B. Zanchi, J. M. E. de Lange, R. Stoevelaar, A. O. Manzi, A. D. Nobre, R. N. Lootens, and J. Backer, 2010: The spatial variability of $CO_{2}$ storage and the interpretation of eddy covariance fluxes in central Amazonia. Agricultural and Forest Meteorology 150(2), 226-237. https://doi.org/10.1016/j.agrformet.2009.11.005
  5. Finnigan, J., 2006: The storage term in eddy flux calculations. Agricultural and Forest Meteorology 136, 108-113. https://doi.org/10.1016/j.agrformet.2004.12.010
  6. Kang, M., J. Kim, H.-S. Kim, B. M. Thakuri, and J.-H. Chun, 2014: On nighttime correction of $CO_{2}$ flux measured by eddy covariance over temperature forests in complex terrain. Korean Journal of Agricultural and Forest Meteorology 16(3), 233-245. https://doi.org/10.5532/KJAFM.2014.16.3.233
  7. Lee, X., 1998: On micrometeorological observations of surfaceair exchange over tall vegetation. Agricultural and Forest Meteorology 91(1), 39-49. https://doi.org/10.1016/S0168-1923(98)00071-9
  8. Leuning, R., O. T. Denmead, A. Miyata, and J. Kim, 2000: Source/sink distributions of heat, water vapour, carbon dioxide and methane in a rice canopy estimated using Lagrangian dispersion analysis. Agricultural and Forest Meteorology 104(3), 233-249. https://doi.org/10.1016/S0168-1923(00)00158-1
  9. Mauder, M., and T. Foken, 2011: Documentation and instruction manual of the eddy-covariance software package TK3. Univ., Abt. Mikrometeorologie.
  10. Moncrieff, J. B., J. Massheder, H. De Bruin, J. Elbers, T. Friborg, B. Heusinkveld, P. Kabat, S. Scott, H. Sogaard, and A. Verhoef, 1997: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology 188, 589-611.
  11. Monteith, J., and M. Unsworth, 2013: Principles of Environmental Physics: Plants, Animals, and the Atmosphere. Academic Press, 298pp.
  12. Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir, 2006: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4), 571-583. https://doi.org/10.5194/bg-3-571-2006
  13. Reichstein. M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J.-M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11(9), 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
  14. Saito, M., A. Miyata, H. Nagai, and T. Yamada, 2005: Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agricultural and Forest Meteorology 135(1), 93-109. https://doi.org/10.1016/j.agrformet.2005.10.007
  15. Stull, R. B., 1988: An introduction to boundary layer meteorology: Springer Science & Business Media, 381-382pp.
  16. van Dijk, A., A. Moene, and H. De Bruin, 2004: The principles of surface flux physics: theory, practice and description of the ECPACK library. Meteorology and Air Quality Group, Wageningen University, 42pp.
  17. van Gorsel, E., N. Delpierre, R. Leuning, A. Black, J. W. Munger, S. Wofsy, M. Aubinet, C. Feigenwinter, J. Beringer, D. Bonal, B. Z. Chen, J. Q. Chen, R. Clement, K. J. Davis, A. R. Desai, D. Dragoni, S. Etzold, T. Grunwald, L. H. Gu, B. Heinesch, L. R. Hutyra, W. W. P. Jans, W. Kutsch, B. E. Law, M. Y. Leclerc, I. Mammarella, L. Montagnani, A. Noormets, C. Rebmann, and S. Wharton, 2009: Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of $CO_{2}$. Agricultural and Forest Meteorology 149(11), 1919-1930. https://doi.org/10.1016/j.agrformet.2009.06.020
  18. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106(447), 85-100. https://doi.org/10.1002/qj.49710644707
  19. Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99(1), 127-150. https://doi.org/10.1023/A:1018966204465
  20. Yang, B., P. J. Hanson, J. S. Riggs, S. G. Pallardy, M. Heuer, K. P. Hosman, T. P. Meyers, S. D. Wullschleger, and L. H. Gu, 2007: Biases of $CO_{2}$ storage in eddy flux measurements in a forest pertinent to vertical configurations of a profile system and $CO_{2}$ density averaging. Journal of Geophysical Research: Atmospheres 112(D20).
  21. Yun, J., S. Kim, M. Kang, C.-H. Cho, J.-H. Chun, and J. Kim, 2014: Process networks of ecohydrological systems in a temperate deciduous forest: A complex systems perspective. Korean Journal of Agricultural and Forest Meteorology 16(3), 157. https://doi.org/10.5532/KJAFM.2014.16.3.157
  22. Asiaflux, www.asiaflux.net/index.php?page_id=83 (accesed in August 2015).
  23. National Climate Data Service System, sts.kma.go.kr (accesed in August 2015).