• 제목/요약/키워드: Korean sea

검색결과 14,950건 처리시간 0.045초

국내 대표 해양·수산 과학논문 분석을 통한 우리나라 주변 바다 이름표기에 대한 제언 (Nomenclature of the Seas Around the Korean Peninsula Derived From Analyses of Papers in Two Representative Korean Ocean and Fisheries Science Journals: Present Status and Future)

  • 변도성;최병주
    • 한국해양학회지:바다
    • /
    • 제23권3호
    • /
    • pp.125-151
    • /
    • 2018
  • 지난 20년간(1998-2017년) 한국해양학회지(바다)와 한국수산과학회지에 실린 한글 논문 중 우리나라 주변 바다 이름을 지도에 표기한 논문들을 대상으로 그 표기 방법을 살펴보았다. 지도에 표기된 바다 명칭들의 형태는 크게 세 가지 - 'East Sea(동해)와 Yellow Sea(황해)', 'East Sea(동해), Yellow Sea(황해), South Sea(남해)', 'East Sea(동해), West Sea(서해), South Sea(남해)' - 가 있다. 'East Sea'는 모든 논문에서 'East Sea'로 표기된 반면, 'Yellow Sea'는 'West Sea'와 혼용해서 사용되고 있었다. 'Korea Strait(대한해협)' 대신 'South Sea'의 사용 빈도도 높았다. 이 결과는 연구자들이 해안선으로부터 가까운 연안해역을 우리나라를 기준으로 지리적 방위에 근간하여 부를 때 사용하는 바다 명칭과 주변해에 대한 국제적인 바다 명칭을 혼용하여 사용하고 있음을 보여 준다. 따라서 우리나라 해양 수산 연구자들이 바다 이름표기에 관한 기준을 세우고 일관성 있게 표기하는 것이 시급하다. 이와 관련하여 이 연구에서는 연구논문 작성 시에 주변해와 우리나라 연안해역에 대한 바다 명칭을 서로 구분하여 사용할 것을 제안하였다. 즉, 주변해는 국제적으로 통용되고 있는 'East Sea(동해)', 'Yellow Sea(황해)', 'Korea Strait(대한해협)', 'East China Sea(동중국해)'로 사용하고, 이들 주변 바다에 포함되어 있는 연안해역은 우리나라를 기준으로 상대적 방위에 근거한 'Coastal Sea off the East Coast of Korea(한국 동쪽 연안 바다)', 'Coastal Sea off the West Coast of Korea(한국 서쪽 연안 바다)', 'Coastal Sea off the South Coast of Korea(한국 남쪽 연안 바다)' 등으로 표현할 수 있다. 다른 표현으로는 'East Korea Coastal Zone', 'South Coastal Zone of Korea', 'West Korea Coastal Zone'으로도 표현할 수 있다. 작은 규모의 특정 해역의 경우 해양지명(해상지명과 해저지명)을 사용하여 연구해역을 표기할 수 있다.

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo;Byon, Hye-Kyong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.879-881
    • /
    • 2003
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20${\sim}$30cm and 18${\sim}$24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15${\sim}$20cm and 10${\sim}$15cm, respectively. High variations in the West Sea was results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea was due to two branch currents(Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current(TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/sec) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/sec) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/sec) in the northeastern area of Tushima island with TWC, respectively.

  • PDF

명치시대(明治時代) 일본의 조선(朝鮮) 바다 조사 (On the Japanese Investigations for the Korean Sea during Meiji Period)

  • 이근우
    • 수산경영론집
    • /
    • 제43권3호
    • /
    • pp.1-22
    • /
    • 2012
  • This study is to survey the Japanese investigations for Korean sea during Meiji period. Meiji government was eager to develop new fishing ground to provide the marine products to their people, to offer the job for their people and to accumulate the starting capital. They found that the Korean sea was abundant in shark, sea cucumber and ear shell. These products were valuable for Chinese foods. From 1870's, Japan Navy investigated Korean sea for military purpose and subsequently for fishery. The first investigation for Korean maritime products was The Circumstances for Catching Fish in Korean Sea by Sekizawa Akikiyo in 1893. He was the most famous specialist in fishery and insisted that Japanese fishermen must go to Korean sea and catch fishes. Meiji government accepted his opinion and pushed the policy sending fishermen to Korean sea. Meiji government enlarged the investigations and backed up the activities of fisherman and the organization for fishery in Korean sea. Especially, the investigations by The Association for Korean Sea Fishery were repeated and detailed(1897~1900). The Association intervened the conflicts between Korean and Japanese fishermen. At the same time, The Association investigated the attitudes of Korean people to Japanese. The Guidelines for Fishery in Korean Sea by Kuzuu Syuzo was also very detail, especially in the kinds of fishes in Korean sea. These investigations were supported by Meiji government or organizations helped by government.

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • 제2권1호
    • /
    • pp.58-60
    • /
    • 2004
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20∼30cm and 18∼24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15∼20cm and 10∼15cm, respectively. High variations in the West Sea were results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea were due to two branch currents (Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current (TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/see) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/see) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/see) in the northeastern area of Tushima island with TWC, respectively.

Sea-Level Trend at the Korean Coast

  • Cho, Kwangwoo
    • 한국환경과학회지
    • /
    • 제11권11호
    • /
    • pp.1141-1147
    • /
    • 2002
  • Based on the tide gauge data from the Permanent Service for Meau Sea Level (PSMSL) collected at 23 locations in the Korean coast, the long-term sea-level trend was computed using a simple linear regression fit over the recorded length of the monthly mean sea-level data. The computed sea-level trend was also corrected for the vertical land movement due to post glacial rebound(PGR) using the ICE-4G(VM2) model output. It was found that the PGR-corrected sea-level trend near Korea was 2.310 $\pm$ 2.220 mm/yr, which is higher than the global average at 1.0∼2.0mm/yr, as assessed by the Intergovernmental Panel on Climate Change(IPCC). The regional distribution of the long-term sea-level trend near Korea revealed that the South Sea had the largest sea-level rise followed by the West Sea and East Sea, respectively, supporting the results of the previous study by Seo et al. However, due to the relatively short record period and large spatial variability, the sea-level trend from the tide gauge data for the Korean coast could be biased with a steric sea-level rise by the global warming during the 20th century.

Fundamental Research on Spring Season Daytime Sea Fog Detection Using MODIS in the Yellow Sea

  • Jeon, Joo-Young;Kim, Sun-Hwa;Yang, Chan-Su
    • 대한원격탐사학회지
    • /
    • 제32권4호
    • /
    • pp.339-351
    • /
    • 2016
  • For the safety of sea, it is important to monitor sea fog, one of the dangerous meteorological phenomena which cause marine accidents. To detect and monitor sea fog, Moderate Resolution Imaging Spectroradiometer (MODIS) data which is capable to provide spatial distribution of sea fog has been used. The previous automatic sea fog detection algorithms were focused on detecting sea fog using Terra/MODIS only. The improved algorithm is based on the sea fog detection algorithm by Wu and Li (2014) and it is applicable to both Terra and Aqua MODIS data. We have focused on detecting spring season sea fog events in the Yellow Sea. The algorithm includes application of cloud mask product, the Normalized Difference Snow Index (NDSI), the STandard Deviation test using infrared channel ($STD_{IR}$) with various window size, Temperature Difference Index(TDI) in the algorithm (BTCT - SST) and Normalized Water Vapor Index (NWVI). Through the calculation of the Hanssen-Kuiper Skill Score (KSS) using sea fog manual detection result, we derived more suitable threshold for each index. The adjusted threshold is expected to bring higher accuracy of sea fog detection for spring season daytime sea fog detection using MODIS in the Yellow Sea.

한국 해산 히드라충류의 동물지리학적 분포 (Zoogeographical Distribution of Marine Hydroids(Cnidaria: Hydrozoa: Hydroida) in Korea)

  • 박정희
    • Animal Systematics, Evolution and Diversity
    • /
    • 제8권2호
    • /
    • pp.279-300
    • /
    • 1992
  • 지금까지 밝혀진 한국 해산 히드라충류는 17과 55속 120종이다. 이 가운데 Abietinaria filicula (ellis and Solander, 1786)는 한국 미기록종으로 밝혀졌고 Sertularella miurensis Stechow, 1921는 96개 채집지 가운데 33개 지점에서 채집되어 한국해역의 히드라충류 가운데 우점종으로 나타났다. 한국 해역은 동해, 남해, 황해 그리고 제주도의 4개 해역으로 나뉜다. 각 해역에서 채집된 종수는 동해 43종, 남해 73종, 황해 52종 그리고 제주도 83종으로 나타났다. 따라서 제주도 해역은 한국 해산 히드라충류의 가장 높은 다양활르 나타낸다고 할 수 있다. 각 해역간의 군집계수는 동해-황해가 0.444, 동해-남해가 0.553, 동해-제주도가 0.519, 황해-남해가 0.682, 황해-제주도가 0.533 그리고 남해-제주도가 0.642이다. 그러므로 히드라충류의 분포에 따른 두 해역 사이의 연관은 황해-남해가 가장 높고 동해-황해가 가장 낮다.

  • PDF

국제 학술지에 발표된 연구 논문에서 동해의 표기 현황 (Status of Naming the East Sea in International Scientific Journals)

  • 강동진;임병호;장소영;김윤배;김경렬
    • Ocean and Polar Research
    • /
    • 제31권1호
    • /
    • pp.133-156
    • /
    • 2009
  • We have named the sea surrounded by the Korean Peninsula, Primorye of Russia, and Japanese Islands as the East Sea. Historically this region has been variously named the East Sea, Chosun Sea, and, more recently, Japan Sea and Sea of Japan. Since the scientific research papers can play important roles on the naming the sea, the status of naming the East Sea in international scientific journals was investigated. Among 472 papers in 46 international journals that we assessed, Japan Sea (or Sea of Japan) was used in 322 papers (68.2%), East Sea was used in 21 papers (4.4%), and parallel usage of East Sea and Japan Sea accounted for 27.3% (129 papers). In all scientific papers before the early 1980s, East Sea was not used. Since the first parallel usage of East Sea and Japan Sea in 1985, these designations has been increasingly used. After 2004, the parallel usage has replaced the single designation of Japan Sea.

칵핏 흡차음 성능 예측을 위한 Virtual SEA 의 활용 (Application of Virtual SEA for the Prediction of Acoustic Performance of Cockpit)

  • 정원태;고창성;박경환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.903-912
    • /
    • 2007
  • One of the crucial factors which determine the quality and the accuracy of SEA model is how subsystems are defined. Experimental SEA technique had been a unique way to divide entire systems accurately for mid-frequency range, until FEA based virtual FRF response technique, virtual SEA method presented. Virtaul SEA has been developed for predictive SEA tool in early design process. In this study, Modal analysis results from modified crash FE model is used for Statistical transfer matrix. Observation nodes on the cockpit are grouped by attractive substructuring method based on point to point transfer and correlation matrix. Complex cockpit structure is divided into subsystems by automatic substructuring. Comparison with experimental SEA results validates the application of Virtual SEA to cockpit.

  • PDF

봄철 서해안 해무의 수치예보 (Numerical forecasting of sea fog at West sea in spring)

  • 한경근;김영철
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.94-100
    • /
    • 2006
  • The purpose of this case study is to determine the possibility of Numerical Forecasting of sea fog at West Sea in spring time. For practical method of analyzing the data collected from 24th to 26th March 2003, Numerical Weather Prediction model MM5(Mesoscale Model Version 5) and synoptic field study using synoptic chart, upper level chart, and sea surface temperature were employed. The results of synoptic field analysis summarized that sea fog at West sea in spring is intensified by the inflow of the warm flow from west or southwest, low sea surface temperature to increase the temperature difference between air and sea surface, and inversion layer to disturb the disperse. It appears that the possibility of sea fog forecasting by MM5, in view of the result that the MM5 output is similar to the synoptic fields analysis.

  • PDF