DOI QR코드

DOI QR Code

Fundamental Research on Spring Season Daytime Sea Fog Detection Using MODIS in the Yellow Sea

  • Jeon, Joo-Young (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST)) ;
  • Kim, Sun-Hwa (Marine Safety Research Center, Korea Institution of Ocean Science and Technology (KIOST)) ;
  • Yang, Chan-Su (Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST))
  • Received : 2016.05.04
  • Accepted : 2016.06.14
  • Published : 2016.08.31

Abstract

For the safety of sea, it is important to monitor sea fog, one of the dangerous meteorological phenomena which cause marine accidents. To detect and monitor sea fog, Moderate Resolution Imaging Spectroradiometer (MODIS) data which is capable to provide spatial distribution of sea fog has been used. The previous automatic sea fog detection algorithms were focused on detecting sea fog using Terra/MODIS only. The improved algorithm is based on the sea fog detection algorithm by Wu and Li (2014) and it is applicable to both Terra and Aqua MODIS data. We have focused on detecting spring season sea fog events in the Yellow Sea. The algorithm includes application of cloud mask product, the Normalized Difference Snow Index (NDSI), the STandard Deviation test using infrared channel ($STD_{IR}$) with various window size, Temperature Difference Index(TDI) in the algorithm (BTCT - SST) and Normalized Water Vapor Index (NWVI). Through the calculation of the Hanssen-Kuiper Skill Score (KSS) using sea fog manual detection result, we derived more suitable threshold for each index. The adjusted threshold is expected to bring higher accuracy of sea fog detection for spring season daytime sea fog detection using MODIS in the Yellow Sea.

Keywords

References

  1. Ackerman, S., K. Strabala, P. Menzel, R. Frey, C. Moeller, and L. Gumley, 1998. Discriminating Clear Sky from Clouds with MODIS, Journal of Geophysical Research: Atmospheres, 103(D24): 32141-32157. https://doi.org/10.1029/1998JD200032
  2. Ackerman, S., R. Frey, K. Strabala, Y. Liu, L. Gumley, B. Baum, and P. Menzel, 2010. Discriminating Clear-Sky from Cloud with MODIS, Algorithm Theoretical Basis Document (MOD35), Version 6.1 (Washington DC: NASA).
  3. Ahn, M.H., E.H. Sohn, and B.J. Hwang, 2003. A New Algorithm for Sea Fog/Stratus Detection Using GMS-5 IR Data, Advances in Atmospheric Sciences, 20: 899-913. https://doi.org/10.1007/BF02915513
  4. Allen, Z.J. 1994. Drop Size Distributions and Related Properties of Fog for Five Locations Measured from Aircraft. NASA Contractor Report 4585, NASA, USA.
  5. Bendix, J., B. Thies, J. Cermak, and T. NauB, 2005. Ground Fog Detection from Space Based on MODIS Daytime Data-A Feasibility Study. Weather Forecast, 20(6): 989-1005. https://doi.org/10.1175/WAF886.1
  6. Bendix, J., 2002. A Satellite-Based Climatology of Fog and Low-Level Stratus in Germany and Adjacent Areas, Atmospheric Research, 64: 3-18. https://doi.org/10.1016/S0169-8095(02)00075-3
  7. Bendix, J., B. Thies, T. NauB, and J. Cermak, 2006. A Feasibility Study of Daytime Fog and Low Stratus Detection with TERRA/AQUA MODIS over Land, Meteorological Applications, 13: 111-125. https://doi.org/10.1017/S1350482706002180
  8. Cermak, J. and J. Bendix, 2007. Dynamical Nighttime Fog/Low Stratus Detection Based on Meteosat SEVIRI Data: A Feasibility Study, Pure and Applied Geophysics,164: 1179-1192. https://doi.org/10.1007/s00024-007-0213-8
  9. Cermak, J. and J. Bendix, 2008. A Novel Approach to Fog/Low Stratus Detection Using Meteosat 8 Data. Atmospheric Research, 87(3): 279-292. https://doi.org/10.1016/j.atmosres.2007.11.009
  10. Cermak, J. and J. Bendix, 2011. Detecting Ground Fog from Space-a Microphysics-Based Approach. International Journal of Remote Sensing, 32: 3345-3371. https://doi.org/10.1080/01431161003747505
  11. Cho, Y.G., M.O. Kim, and B.C. Kim, 2000. Sea Fog around the Korean Peninsula, American Meteorological Society, 39: 2473-2479.
  12. Dong, W., L. Bo, T. Zhang, and F. Yan, 2015. A Method of Detecting Sea Fogs Using CALIOP Data and Its Application to Improve MODIS-Based Sea Fog Detection. Journal of Quantitative Spectroscopy and Radiative Transfer, 153: 88-94. https://doi.org/10.1016/j.jqsrt.2014.09.021
  13. Dozier, J. and T.H. Painter, 2004. Multispectral and Hyperspectral Remote Sensing of Alpine Snow Properties, Annual Review of Earth and Planetary Sciences, 32: 465-494. https://doi.org/10.1146/annurev.earth.32.101802.120404
  14. Dozier, J., 1989. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper, Remote Sensing of Environment, 28: 9-22. https://doi.org/10.1016/0034-4257(89)90101-6
  15. Ellrod, G.P., 1995. Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery, Weather Forecast, 10: 606-619. https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
  16. Eyre, J.R., J.L. Brownscombe, and R.J. Allam, 1984. Detection of Fog at Night Using Advanced Very High Resolution Radiometer (AVHRR) Imagery, Meteorological Magazine, 113: 265-271.
  17. Gang, F., G. Jingtian, X. Shang-Ping, D. Yihong, and Z. Meigen, 2006. Analysis and High-Resolution Modeling of a Dense Sea Fog Event over the Yellow Sea. Atmospheric Research, 81(4): 293-303. https://doi.org/10.1016/j.atmosres.2006.01.005
  18. Gao, S.H, W. Wu, L. Zhu, G. Fu, and B. Huang, 2009. Detection of Nighttime Sea Fog/Stratus over the Huanghai Sea Using MTSAT-1R IR Data, Acta Oceanologica Sinica, 28(2):23-35.
  19. Gultepe, I., R. Tardif, S.C Michaelides, J. Cermak, A. Bott, J. Bendix, M.D. Muller, M. Pagowski, B, Hansen, G. Ellrod, W. Jacobs, G. Toth, and S.G. Cober, 2007. Fog Research: A Review of Past Achievements and Future Perspectives, Pure and Applied Geophysics, 164: 1121-1159. https://doi.org/10.1007/s00024-007-0211-x
  20. Hall, D.K., and G.A. Riggs, 2014. Encyclopedia of Snow, Ice and Glaciers, 779-780, Springer, Netherlands.
  21. Hao, Z.Z., D.L. Pan, F. Gong, and J.Y. Chen, 2009. Sea Fog Characteristics Based on MODIS Data and Streamer Model, Proc. of the SPIE 7475, Remote Sensing of Clouds and the Atmosphere XIV, Berlin, Germany, August 31, 2009, 747515-1.
  22. Heo, K.Y. and K.J. Ha, 2004. Classification of Synoptic Pattern Associated with Coastal Fog around the Korean Peninsula, Asia-Pacific Journal of Atmospheric Sciences, 40(5): 541-556 (in Korean with English abstract).
  23. Heo, K.Y. and K.J. Ha, 2010. A Coupled Model Study on the Formation and Dissipation of Sea Fogs, Monthly Weather Review, 138, 1186-1205. https://doi.org/10.1175/2009MWR3100.1
  24. Heo, K.Y., J.H. Kim, J.S. Shim, K.J. Ha, A.S., Suh, H.M. Oh, and S.Y. Min, 2008. A Remote Sensed Data Combined Method for Sea Fog Detection, Korean Journal of Remote Sensing, 24(1): 1-16. https://doi.org/10.7780/kjrs.2008.24.1.1
  25. Heo, K.Y., S.Y. Min, K.J. Ha, and J.H. Kim, 2008. Discrimination between Sea Fog and Low Stratus Using Texture Structure of MODIS Satellite Images, Korean Journal of Remote Sensing, 24(6): 571-581(in Korean with English abstract). https://doi.org/10.7780/kjrs.2008.24.6.571
  26. Heo, K.Y., S. Park, K.J. Ha, and J.S. Shim, 2014. Algorithm for Sea Fog Monitoring with the Use of Information Technologies. Meteorological Applications, 21(2): 350-359. https://doi.org/10.1002/met.1344
  27. Hunt, G.E., 1973. Radiative Properties of Terrestrial Clouds at Visible and Infrared Thermal Window Wavelengths, Quarterly Journal of the Royal Meteorological Society, 99: 346-369.
  28. Kriebel, K., G. Gesell, M. Kastner, and H. Mannstein, 2003. The Cloud Analysis Tool APOLLO: Improvements and Validations, International Journal of Remote Sensing, 24(12): 2389-2408. https://doi.org/10.1080/01431160210163065
  29. Lee, T., F. Turk, and K., Richardson, 1997. Stratus and Fog Products Using GOES-8-9 3.9-${\mu}m$ Data, Weather and Forecasting, 12(3): 664-677. https://doi.org/10.1175/1520-0434(1997)012<0664:SAFPUG>2.0.CO;2
  30. Salomonsona, V.V. and I. Appel, 2004. Estimating Fractional Snow Cover from MODIS Using the Normalized Difference Snow Index, Remote Sensing of Environment, 89: 351-360. https://doi.org/10.1016/j.rse.2003.10.016
  31. Stowe, L.L., P.A. Davis, and E.P. McClain, 1999. Scientific Basis and Initial Evaluation of the CLAVR-1 Global Clear/Cloud Classification Algorithm for the Advanced Very High Resolution Radiometer, Journal of Atmospheric and Oceanic Technology, 16(6): 656-681. https://doi.org/10.1175/1520-0426(1999)016<0656:SBAIEO>2.0.CO;2
  32. Turner, J., R.J. Allam, and D.R. Maine, 1986. A Case-Study of the Detection of Fog at Night Using Channels 3 and 4 on the Advanced Very High-Resolution Radiometer (AVHRR), Meteorological Magazine, 115(1370): 285-290.
  33. Wang, M., and W. Shi, 2006. Cloud Masking for Ocean Color Data Processing in the Coastal Regions, IEEE Transactions on Geoscience and Remote Sensing, 44: 3196-3205. https://doi.org/10.1109/TGRS.2006.876293
  34. White, D.A., 2008. The MODIS Conversion Toolkit (MCTK) User's Guide, Online available: http://nsidc.org/data/modis/tools.html.
  35. Wu, X. and S. Li, 2014. Automatic Sea Fog Detection over Chinese Adjacent Oceans Using Terra/MODIS Data, International Journal of Remote Sensing, 35(21): 7430-7457. https://doi.org/10.1080/01431161.2014.968685
  36. Yang, C.S, S.H. Kim, O. Kazuo, and J.H. Back, 2015. Generation of High Resolution Sea Surface Temperature Using Multi-Satellite Data for Operational Oceanography, Acta Oceanologica Sinica, 34(7): 74-88. https://doi.org/10.1007/s13131-015-0694-8
  37. Yi, L., S.P. Zhang, B. Thies, X.M. Shi, K. Trachte, and J. Bendix, 2015. Spatio-Temporal Detection of Fog and Low Stratus Top Heights over the Yellow Sea with Geostationary Satellite Data as a Precondition for Ground Fog Detection - a Feasibility Study, Atmospheric Research, 151:212-223. https://doi.org/10.1016/j.atmosres.2014.03.020
  38. Yoo, J.M., Y.M. Kim, M.H. Ahn, Y.S. Kim, and C.Y. Chung, 2005. Characteristics of MODIS Satellite Data during Fog Occurrence near the Inchon International Airport, Journal Korean Earth Science Society, 26(2): 149-159.
  39. Zhang, S. and L. Yi, 2013. A Comprehensive Dynamic Threshold Algorithm for Daytime Sea Fog Retrieval over the Chinese Adjacent Seas, Pure and Applied Geophysics, 170(11): 1931-1944. https://doi.org/10.1007/s00024-013-0641-6
  40. Zhang, S., M. Li, X. Meng, G. Fu, Z. Ren, and S. Gao, 2012. A Comparison Study between Spring and Summer Fogs in the Yellow Sea - Observations and Mechanisms, Pure and Applied Geophysics, 169:1001-1017. https://doi.org/10.1007/s00024-011-0358-3

Cited by

  1. Development of Day Fog Detection Algorithm Based on the Optical and Textural Characteristics Using Himawari-8 Data vol.35, pp.1, 2019, https://doi.org/10.7780/kjrs.2019.35.1.8
  2. Sea Fog Identification from GOCI Images Using CNN Transfer Learning Models vol.9, pp.2, 2020, https://doi.org/10.3390/electronics9020311
  3. Development of Fog Detection Algorithm Using GK2A/AMI and Ground Data vol.12, pp.19, 2020, https://doi.org/10.3390/rs12193181