• 제목/요약/키워드: Korean Medicine ontology

검색결과 119건 처리시간 0.03초

오미자(五味子) 클로로포름 분획물이 이상지질혈증 생쥐의 지질대사 및 간 조직 유전자 변화에 미치는 영향 (The Effects of Schizandrae Fructus Chloroform Fraction on Gene Expression in Liver Tissue of Dyslipidemic Mice)

  • 신윤리;김영균;김경민
    • 한방비만학회지
    • /
    • 제15권2호
    • /
    • pp.111-122
    • /
    • 2015
  • Objectives: Schizandrae fructus (Schizandra chinensis) is one of very common herbs, it is known as natural antioxidants, anti-inflammatory agent. Also some reports show that its extract works to regulate of dyslipidemia. This study was designed to investigate the effects of Schizandrae fructus chloroform fraction (SFCF) on serum lipid levels in dyslipidemic mice. Methods: The levels of total cholesterol, high density lipoprotein-cholesterol, triglyceride, aspartate aminotransferase (AST), alanine aminotransferase (ALT), fasting blood glucose in serum were measured. Histopathological and gene expression changes in liver tissue were also observed. Results: Oral administration of SFCF lowered levels of total cholesterol and triglyceride, which were elevated by high-fat diet. But SFCF did not affect on weight changes and serum AST, ALT levels in dyslipidemic mice. After carrying out gene ontological analysis, large numbers of genes in high-fat diet group were up-(347) or down-regulated (235). In SFCF treated mice, some changed expression of the genes was restored to normal levels, with a recovery rate of 17%. And it seems that fatty acid biosynthesis pathway was one of important key pathways to recovery. Conclusions: SFCF has beneficial effect on dyslipidemia, and could be used to prevent and treat cardiovascular disease.

생물정보학적 접근을 통한 Caenorhabditis elegans 모델시스템의 생체내 RNAi 기능예측 및 비특이적 공동발현억제 현상 분석 (Bioinformatics Approach to Direct Target Prediction for RNAi Function and Non-specific Cosuppression in Caenorhabditis elegans)

  • 김태호;김의용;주현
    • KSBB Journal
    • /
    • 제26권2호
    • /
    • pp.131-138
    • /
    • 2011
  • Some computational approaches are needed for clarifying RNAi sequences, because it takes much time and endeavor that almost of RNAi sequences are verified by experimental data. Incorrectness of RNAi mechanism and other unaware factors in organism system are frequently faced with questions regarding potential use of RNAi as therapeutic applications. Our massive parallelized pair alignment scoring between dsRNA in Genebank and expressed sequence tags (ESTs) in Caenorhabditis elegans Genome Sequencing Projects revealed that this provides a useful tool for the prediction of RNAi induced cosuppression details for practical use. This pair alignment scoring method using high performance computing exhibited some possibility that numerous unwanted gene silencing and cosuppression exist even at high matching scores each other. The classifying the relative higher matching score of them based on GO (Gene Ontology) system could present mapping dsRNA of C. elegans and functional roles in an applied system. Our prediction also exhibited that more than 78% of the predicted co-suppressible genes are located in the ribosomal spot of C. elegans.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Systematic analysis of the pharmacological function of Schisandra as a potential exercise supplement

  • Hong, Bok Sil;Baek, Suji;Kim, Myoung-Ryu;Park, Sun Mi;Kim, Bom Sahn;Kim, Jisu;Lee, Kang Pa
    • 운동영양학회지
    • /
    • 제25권4호
    • /
    • pp.38-44
    • /
    • 2021
  • [Purpose] Exercise can prevent conditions such as atrophy and degenerative brain diseases. However, owing to individual differences in athletic ability, exercise supplements can be used to improve a person's exercise capacity. Schisandra chinensis (SC) is a natural product with various physiologically active effects. In this study, we analyzed SC using a pharmacological network and determined whether it could be used as an exercise supplement. [Methods] The active compounds of SC and target genes were identified using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). The active compound and target genes were selected based on pharmacokinetic (PK) conditions (oral bioavailability (OB) ≥ 30%, Caco-2 permeability (Caco-2) ≥ -0.4, and drug-likeness (DL) ≥ 0.18). Gene ontology (GO) was analyzed using the Cytoscape software. [Results] Eight active compounds were identified according to the PK conditions. Twenty-one target genes were identified after excluding duplicates in the eight active compounds. The top 10 GOs were analyzed using GO-biological process analysis. GO was subsequently divided into three representative categories: postsynaptic neurotransmitter receptor activity (53.85%), an intracellular steroid hormone receptor signaling pathway (36.46%), and endopeptidase activity (10%). SC is related to immune function. [Conclusion] According to the GO analysis, SC plays a role in immunity and inflammation, promotes liver metabolism, improves fatigue, and regulates the function of steroid receptors. Therefore, we suggest SC as an exercise supplement with nutritional and anti-fatigue benefits.

Target engagement of ginsenosides in mild cognitive impairment using mass spectrometry-based drug affinity responsive target stability

  • Zhu, Zhu;Li, Ruimei;Qin, Wei;Zhang, Hantao;Cheng, Yao;Chen, Feiyan;Chen, Cuihua;Chen, Lin;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.750-758
    • /
    • 2022
  • Background: Mild cognitive impairment (MCI) is a transitional condition between normality and dementia. Ginseng is known to have effects on attenuating cognitive deficits in neurogenerative diseases. Ginsenosides are the main bioactive component of ginseng, and their protein targets have not been fully understood. Furthermore, no thorough analysis is reported in ginsenoside-related protein targets in MCI. Methods: The candidate protein targets of ginsenosides in brain tissues were identified by drug affinity responsive target stability (DARTS) coupled with label-free liquid chromatography-mass spectrometry (LC-MS) analysis. Network pharmacology approach was used to collect the therapeutic targets for MCI. Based on the above-mentioned overlapping targets, we built up a proteineprotein interaction (PPI) network in STRING database and conducted gene ontology (GO) enrichment analysis. Finally, we assessed the effects of ginseng total saponins (GTS) and different ginsenosides on mitochondrial function by measuring the activity of the mitochondrial respiratory chain complex and performing molecular docking. Results: We screened 2526 MCI-related protein targets by databases and 349 ginsenoside-related protein targets by DARTS. On the basis of these 81 overlapping genes, enrichment analysis showed the mitochondria played an important role in GTS-mediated MCI pharmacological process. Mitochondrial function analysis showed GTS, protopanaxatriol (PPT), and Rd increased the activities of complex I in a dose-dependent manner. Molecular docking also predicted the docking pockets between PPT or Rd and mitochondrial respiratory chain complex I. Conclusion: This study indicated that ginsenosides might alleviate MCI by targeting respiratory chain complex I and regulating mitochondrial function, supporting ginseng's therapeutic application in cognitive deficits.

Identification of the Marker Genes Related With Chronic Mitral Valve Disease in Dogs

  • Yoon, Byung-Gook;Lee, Dong-Soo;Seo, Kyoung-Won;Song, Kun-Ho
    • 한국임상수의학회지
    • /
    • 제36권4호
    • /
    • pp.190-195
    • /
    • 2019
  • We aimed to identify genomic variations as well as the marker genes related with chronic mitral valve disease (CMVD) in Canis lupus familiaris using whole genome resequencing, which provides valuable resources for further study. Two ten-year old female Canis lupus familiaris English cocker spaniels were used for this study, one control and one who had been diagnosed as CMVD. For the whole genome resequencing, muscles from the left ventricular wall were collected from each dog. With the HiSeq DNA Shotgun library and $HiSeq^{TM}$ 2000 platform, whole genome resequencing was performed. From the results, we identified 5 million and 6 million variants in gene expression in the control and CMVD-diagnosed subject, respectively. We then selected the top 1,000 genes from the SNP, INS, and DEL mutation and 675 genes among them were overlapped for every mutation between the control and CMVD-diagnosed patient. Interestingly, in both groups, the intron variant (91.16 and 91.18%) and upstream variant (3.10 and 3.08%) are most highly related. Among the overlapped 675 genes, gene ontology for intracellular signal transduction is highly counted in INS, and DEL, and SNPs (35, 33, 31, respectively). In this study, we found that the COL and CDH gene families could be key molecules in identifying the difference in gene expression between control and CMVD-diagnosed dogs. We believe further studies will prove the importance of variants in key molecule expression and that these data will serve as a valuable foundation stone the study of canine CMVD.

Bioinformatics Analysis of Autophagy and Mitophagy Markers Associated with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Youn, Dong Hyuk;Kim, Bong Jun;Hong, Eun Pyo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권2호
    • /
    • pp.236-244
    • /
    • 2022
  • Objective : To evaluate the interactions among differentially expressed autophagy and mitophagy markers in subarachnoid hemorrhage (SAH) patients with delayed cerebral ischemia (DCI). Methods : The expression data of autophagy and mitophagy-related makers in the cerebrospinal fluid (CSF) cells was analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting. The markers included death-associated protein kinase (DAPK)-1, BCL2 interacting protein 3 like (BNIP3L), Bcl-1 antagonist X, phosphatase and tensin homolog-induced kinase (PINK), Unc-51 like autophagy activating kinase 1, nuclear dot protein 52, and p62. In silico functional analyses including gene ontology enrichment and the protein-protein interaction network were performed. Results : A total of 56 SAH patients were included and 22 (38.6%) of them experienced DCI. The DCI patients had significantly increased mRNA levels of DAPK1, BNIP3L, and PINK1, and increased expression of BECN1 compared to the non-DCI patients. The most enriched biological process was the positive regulation of autophagy, followed by the response to mitochondrial depolarization. The molecular functions ubiquitin-like protein ligase binding and ubiquitin-protein ligase binding were enriched. In the cluster of cellular components, Lewy bodies and the phagophore assembly site were enriched. BECN1 was the most connected gene among the differentially expressed markers related to autophagy and mitophagy in the development of DCI. Conclusion : Our study may provide novel insight into mitochondrial dysfunction in DCI pathogenesis.

Proteomic studies of putative molecular signatures for biological effects by Korean Red Ginseng

  • Lee, Yong Yook;Seo, Hwi Won;Kyung, Jong-Su;Hyun, Sun Hee;Han, Byung Cheol;Park, Songhee;So, Seung Ho;Lee, Seung Ho;Yi, Eugene C.
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.666-675
    • /
    • 2019
  • Background: Korean Red Ginseng (KRG) has been widely used as an herbal medicine to normalize and strengthen body functions. Although many researchers have focused on the biological effects of KRG, more studies on the action mechanism of red ginseng are still needed. Previously, we investigated the proteomic changes of the rat spleen while searching for molecular signatures and the action mechanism of KRG. The proteomic analysis revealed that differentially expressed proteins (DEPs) were involved in the increased immune response and phagocytosis. The aim of this study was to evaluate the biological activities of KRG, especially the immune-enhancing response of KRG. Methods: Rats were divided into 4 groups: 0 (control group), 500, 1000, and 2000 mg/kg administration of KRG powder for 6 weeks, respectively. Isobaric tags for relative and absolute quantitation was performed with Q-Exactive LC-MS/MS to compare associated proteins between the groups. The putative DEPs were identified by a current UniProt rat protein database search and by the Gene Ontology annotations. Results: The DEPs appear to increase the innate and acquired immunity as well as immune cell movement. These results suggest that KRG can stimulate immune responses. This analysis refined our targets of interest to include the potential functions of KRG. Furthermore, we validated the potential molecular targets of the functions, representatively LCN2, CRAMP, and HLA-DQB1, by Western blotting. Conclusion: These results may provide molecular signature candidates to elucidate the mechanisms of the immune response by KRG. Here, we demonstrate a strategy of tissue proteomics for the discovery of the molecular function of KRG.

Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells

  • Kim, You-Sun;Kokturk, Nurdan;Kim, Ji-Young;Lee, Sei Won;Lim, Jaeyun;Choi, Soo Jin;Oh, Wonil;Oh, Yeon-Mok
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.728-733
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells

  • Lee, Junwon;Choi, Sang-Hwi;Lee, Dongjin R;Kim, Dae-Sung;Kim, Dong-Wook
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.110-118
    • /
    • 2018
  • The objective of this study was to induce the production of isthmic organizer (IsO)-like cells capable of secreting fibroblast growth factor (FGF) 8 and WNT1 from human embryonic stem cells (ESCs). The precise modulation of canonical Wnt signaling was achieved in the presence of the small molecule CHIR99021 ($0.6{\mu}M$) during the neural induction of human ESCs, resulting in the differentiation of these cells into IsO-like cells having a midbrain-hindbrain border (MHB) fate in a manner that recapitulated their developmental course in vivo. Resultant cells showed upregulated expression levels of FGF8 and WNT1. The addition of exogenous FGF8 further increased WNT1 expression by 2.6 fold. Gene ontology following microarray analysis confirmed that IsO-like cells enriched the expression of MHB-related genes by 40 fold compared to control cells. Lysates and conditioned media of IsO-like cells contained functional FGF8 and WNT1 proteins that could induce MHB-related genes in differentiating ESCs. The method for generating functional IsO-like cells described in this study could be used to study human central nervous system development and congenital malformations of the midbrain and hindbrain.