• Title/Summary/Keyword: Korea Research Reactor

Search Result 2,112, Processing Time 0.033 seconds

The Influence of Plasma Surface Modification on Frictional Property of Natural Rubber Vulcanizates

  • Nah, C.;Kim, D.H.;Mathew, G.;Jeon, D.J.;Jurkowski, B.;Jurkowska, B.
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.12-22
    • /
    • 2004
  • The plasma surface modification of natural rubber vulcanizate was carried out using chlorodifluoromethane in a radio-frequency (13.56 MHz) electrodeless bell type plasma reactor. The modification was qualitatively assessed by Fourier transform infrared spectroscopy. The frictional force of the plasma-treated surface was found to decrease with the time of plasma treatment. An increase in the surface polarity, as evidenced by the decrease in contact angle of a sessile drop of water and ethylene glycol on the natural rubber vulcanizate surface, was noted with the plasma modification. In the case of similar plasma treatment of glass surface, only a reduction in the polarity was observed. The use of geometric and harmonic mean methods was found to be useful to evaluate the London dispersive and specific components of surface free energy. Irrespective of the method used for evaluation, an increasing trend in the surface free energy was noted with increasing plasma treatment time. However, the harmonic mean method yielded comparatively higher values of surface free energy than the geometric mean method. The plasma surface modification was found to vary the frictional coefficient by influencing the interfacial, hysteresis and viscous components of friction in opposing dual manners.

Fine-Scale Population Structure of Accumulibacter phosphatis in Enhanced Biological Phosphorus Removal Sludge

  • Wang, Qian;Shao, Yongqi;Huong, Vu Thi Thu;Park, Woo-Jun;Park, Jong-Moon;Jeon, Che-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1290-1297
    • /
    • 2008
  • To investigate the diversities of Accumulibacter phosphatis and its polyhydroxyalkanoate (PHA) synthase gene (phaC) in enhanced biological phosphorus removal (EBPR) sludge, an acetate-fed sequencing batch reactor was operated. Analysis of microbial communities using fluorescence in situ hybridization and 16S rRNA gene clone libraries showed that the population of Accumulibacter phosphatis in the EBPR sludge comprised more than 50% of total bacteria, and was clearly divided into two subgroups with about 97.5% sequence identity of the 16S rRNA genes. PAO phaC primers targeting the phaC genes of Accumulibacter phosphatis were designed and applied to retrieve fragments of putative phaC homologs of Accumulibacter phosphatis from EBPR sludge. PAO phaC primers targeting $G_{1PAO},\;G_{2PAO},\;and\;G_{3PAO}$ groups produced PCR amplicons successfully; the resulting sequences of the phaC gene homologs were diverse, and were distantly related to metagenomic phaC sequences of Accumulibacter phosphatis with 75-98% DNA sequence identities. Degenerate NPAO (non-PAO) phaC primers targeting phaC genes of non-Accumulibacter phosphatis bacteria were also designed and applied to the EBPR sludge. Twenty-four phaC homologs retrieved from NPAO phaC primers were different from the phaC gene homologs derived from Accumulibacter phosphatis, which suggests that the PAO phaC primers were specific for the amplification of phaC gene homologs of Accumulibacter phosphatis, and the putative phaC gene homologs by PAO phaC primers were derived from Accumulibacter phosphatis in the EBPR sludge. Among 24 phaC homologs, a phaC homolog (GINPAO-2), which was dominant in the NPAO phaC clone library, showed the strongest signal in slot hybridization and shared approximately 60% nucleotide identity with the $G_{4PAO}$ group of Accumulibacter phosphatis, which suggests that GINPAO-2 might be derived from Accumulibacter phosphatis. In conclusion, analyses of the 16S rRNA and phaC genes showed that Accumulibacter phosphatis might be phylogenetically and metabolically diverse.

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 (액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구)

  • Son, YoungJu;Lee, Seung Yeop;Jung, JaeYeon;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.59-73
    • /
    • 2019
  • A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.

Synthesis of Polymeric Surfactants Using CSTR and Their Emulsion PSA Properties (연속 교반 반응기를 이용한 고분자 유화제 합성 및 에멀션 점착 물성)

  • Seung-Min Lim;Myung-Cheon Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2023
  • In this research, polymeric anionic surfactants having various molecular weights and acid values were synthesized using a continuous stirred tank reactor (CSTR). The CSTR has an advantage of higher production rate and more constant product properties compared to batch and semi-batch reactors. The polymeric surfactants were made using butyl acrylate as a hydrophobic group and acrylic acid as a hydrophilic group. The synthesized polymeric surfactants were ionized with alkali solution and were used as an anionic surfactant. To investigate the properties as a surfactant, the properties of the synthesized surfactant, such as acid value, critical micelle concentration (CMC) and molecular weight, were measured. The results showed that the acid values of the polymeric surfactants were 60 to 380 and a number average molecular weight were 8,000 to 13,000 g/mol. Also, it was found that the CMC was around 0.01 g/ml, which showed similar level values with ordinary surfactant. To prove the performance of the polymeric surfactant, acrylic emulsion PSAs were synthesized using the acquired polymeric surfactant. The results showed that the maximum peel strength of 21.24 N/25mm when acid value was 150 and molecular weight was 8,500 g/mol. The values of peel strength and initial tack of acrylic emulsion PSAs using polymeric surfactant synthesized in this study showed much higher than those of reference PSAs synthesized using ordinary anionic surfactant, SDS (Sodium Dodecyl Sulfate) and SDS/TRX (Triton X-100).

A Study on the Dose Constraints for Occupational Exposure: Focusing on Expert Opinions by Field of Ridiation Industry (직무피폭의 선량제약치에 관한 연구: 분야별 전문가 의견 중심으로)

  • Il Park;Chan Hee Park;Kyu Hwan Jung;Chan Ho Park;Yong Geon Kim;Tae Jin Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2023
  • A Study on the Introduction of Dose Constraints for Occupational Exposures: Focusing on Experts' Opinions by Field of Radiation Industry. The International Commission on Radiological Protection suggests Justification, Optimization, and Dose Limits as the three principles of radiological protection, among which, as a means of protection optimization, ICRP 103 recommends to set dose constraints. In this study, opinions are collected from experts in each category of radiation industries for stakeholder participation to qualify dose constraints. A guidance and questionnaire for analyzing the dose constraints have been developed for their collection, and opinions were collected from radiation protection experts in selected categories. 20 out of 22 experts, consisted with 91%, have assessed the dose constraints setting is necessary, and 2 experts, consisted with 9%, assessed it is unnecessary. The average of dose constraint presented by experts for RI production institutions is to be the highest level of 15.3 mSv, and light-water reactors (14.6 mSv), non-destructive inspection (14.4 mSv), heavy-water reactor and medical institutes (13.9mSv) is to be above the overall average dose constraint. In case of public institutions, the average dose constraint is to be 8.6mSv, and research institutions (8.8mSv), educational institutions (9.6 mSv), waste disposal sites (9.7 mSv), and general industries (10.6 mSv) are resulted to below the overall average dose constraint. As for the means of setting dose constraints, 8 experts out of 22 suggested setting dose constraints for each specific industry or task. And, 5 experts especially suggest setting dose constraints for the specific groups with relatively high exposure, such as workers with above the record levels. As a countermeasure for workers who exceed the dose constraints, 15 experts out of 22 expressed that the cause analyses for them and preparation for a plan of reducing them are necessary.

Cooling Time Determination of Spent Nuclear Fuel by Detection of Activity Ratio $^{l44}Ce /^{l37}Cs$ (방사능비 $^{l44}Ce /^{l37}Cs$ 검출에 의한 사용후핵연료 냉각기간 결정)

  • Lee, Young-Gil;Eom, Sung-Ho;Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Activity ratio of two radioactive primary fission products which had sufficiently different half-lives was expressed as functions of cooling time and irradiation histories in which average burnup, irradiation time, cycle interval time and the dominant fissile material of the spent fuel were included. The gamma-ray spectra of 36 samples from 6 spent PWR fuel assemblies irradiated in Kori unit-1 reactor were obtained by a spectrometric system equipped with a high purity germanium gamma-ray detector. Activity ratio $^{l44}$Ce $^{l37}$Cs, analyzed from each spectrum, was used for the calculation of cooling time. The results show that the radioactive fission products $^{l44}$Ce and $^{l37}$Cs are considered as useful monitors for cooling time determination because the estimated cooling time by detection of activity ratio $^{l44}$Ce $^{l37}$Cs agreed well with the operator declared cooling time within relative difference of $\pm$5 % despite the low counting rate of the gamma-ray of $^{l44}$Ce (about 10$^{-3}$ count per second). For the samples with several different irradiation histories, the determined cooling time by modeled irradiation history showed good agreement with that by known irradiation history within time difference of $\pm$0.5 year. From this result, it would be expected to be possible to estimate reliably the cooling time of spent nuclear fuel without the exact information about irradiation history. The feasibility study on identification of and/or sorting out spent nuclear fuel by applying the technique for cooling time determination was also performed and the result shows that the detection of activity ratio $^{l44}$Ce $^{l37}$Cs by gamma-ray spectrometry would be usefully applicable to certify spent nuclear fuel for the purpose of safeguards and management in a facility in which the samples dismantled or cut from spent fuel assemblies are treated, such as the post irradiation examination facility.mination facility.

  • PDF

The Evaluation of Usefulness of 99Mo-99mTc Generator Using(n,γ)99Mo Developed by Korea Atomic Energy Research ((n,γ)99Mo를 이용한 99Mo-99mTc발생기의 유용성 평가)

  • Seo, Han Kyung;Kim, Jeong Ho;Shim, Cheol Min;Kim, Byung Cheol;Choi, Do Cheol;Gwon, Yong Ju;Park, Yung Sun;Kim, Dong Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.48-52
    • /
    • 2013
  • Purpose: The Molybdenum which is the raw material of $^{99}Mo-^{99m}Tc$ generator is produced from the nuclear reactor. However, output has dwindled as the two nuclear reactors supplying the bulk of radioactive material-one in Chalk River, Ontario and the other in Petten, the Netherlands-have been closed for repairs or maintenance. This resulted in the enhancement of its price. So $^{99}Mo-^{99m}Tc$ generator using$(n,{\gamma})^{99}Mo$ is developed by Korea Atomic Energy Research Institute (KAERI). Medicinal availability of this generator is evaluated in this study. Materials and Methods: The radioactivity of $^{99m}Tc$ eluted in generator 1, 2 and 3 unit developed by KAERI was measured. The quality control test of generator such as appearance test, pH test, LAL test, sterility test, chemical impurity (Al) test and radiochemical purity test were performed. Planar and SPECT/CT image sof SD rat (6 weeks, Female) at 2 hr after injection of $^{99m}Tc-HDP$ (hydroxymethylenediphosphonate) (TechneScan HDP, Malinckrodt Medical, Dutch) and $^{99m}Tc-DPD$ (diphosphono-1, 2-propanedicarboxylicacid) (TECEOS, CIS bio international, France) which were labeled with $^{99m}Tc$ eluted in KAERI and commercial generator (40.5 GBq, Malinckrodt Medical, Dutch) using SPECT/CT camera (Symbia, Siemense, Germany) were obtained respectively. Results: The mean radioactivity of $^{99m}Tc$ elution generator 1unit was 4.18 GBq (113 mCi), generator 2 unit was 4.73 GBq (128 mCi) and generator 3 unit was 3.33 GBq (90 mCi). All quality control tests were within normal limit except pyrogentest. Pyrogen test was positive. Planar and SPECT/CT images of rat injected $^{99m}Tc-HDP$ which was labeled with $^{99m}Tc$ eluted in commercial generator show increased uptake in bone, stomach and bowl. Planar images show increased uptake in liver and bone in case of $^{99m}Tc-DPD$. However, images of rat injected $^{99m}Tc-HDP$ and $^{99m}Tc-DPD$ which were labelled $^{99m}Tc$ eluted in KAERI generator show increased uptake in bone, liver and spleen. Conclusion: If shortcoming is removed such as pyrogen and liver appearance, domestic role as an alternative generator is thought to be able to fill and to secure the national medical service by supplying $^{99m}Tc$ when the supply of $^{99m}Tc$ be comes short.

  • PDF

A Study on the Recovery of Radiation Hardening of PWR Pessure Vessel Steel Using Michrohardness and Positron Annihilation (미세경도와 양전자 소멸을 이용한 PWR 압력용기강의 조사 경화 회복에 관한 연구)

  • Garl, Seong-Je;Yoon, Young-Ku;Park, Soon-Pil;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.337-350
    • /
    • 1990
  • A post-irradiation annealing study was conducted with use of reactor pressure vessel(RPV) steel A533B Cl.1 base metal irradiated to a dose of 4.84$\times$10$^{18}$ n/$\textrm{cm}^2$ at about 38$0^{\circ}C$. Microhardness and positron annihilation (PA) methods were used to obtain better understanding of the recovery of radiation hardening. Isochronal anneal experiments indicated that two recovery processes occur during annealing of irradiated specimens. The first recovery process occurs in the temperature range of 280-3O5$^{\circ}C$, Michrohardness and positron annihilation (PA) methods were used to obtain better understanding of the recovery of radiation hardening. Isochronal anneal experiments indicated that two recovery processes occur during annealing of irradiated specimens. The first recovery process occurrs in the temperature range of 280-305$^{\circ}C$. The variations of Ip, Iw and R parameters indicated that the formation of vacancy clusters by vacancy agglomeration and the annihilation of monovacancies are the first recovery process. The second recovery process occurs in the range of 405-49$0^{\circ}C$ and positron annihilation parameters measured indicated that the dissolution of carbon atoms decorated around vacancy-type defects and possible precipitates, and the annihilation of monovacancies give rise to the second recovery process. It was further indicated that radiation anneal hardening (RAH) in the range of 305-405$^{\circ}C$ between the temperature ranges for the two processes occurs due to the formation of carbon-decorated vacancy clusters and precipitates. The activation energies, orders of reaction and other characteristics of recovery processes were determined by the Meechan-Brinkman method. The activation energy for the first recovery process was determined as 1.76 eV and that for the second recovery process as 2.00eV. These values are lower than those obtained by other workers. This difference may be attributed to the lower copper content of the RPV steel used in the present study. The order of reaction for the first recovery process was determined as 1.78, while that for the second recovery process as 1.67 Non-integer orders of reaction for recovery processes seem to be attributed to the fact that several mechanisms for the first order and the second order of reaction are compounded in one process. This result also supports for the above conclusions from measurements of PA parameters.

  • PDF

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.