By the increase of internet usage, communicating online became an everyday thing. Thereby various people have experienced profanity by anonymous users. Nowadays lots of studies tried to solve this problem using artificial intelligence, but most of the solutions were for non-real time situations. In this paper, we propose a Telegram plugin that detects swear words using word2vec, and an algorithm to find the target of the sentence. We vectorized the input sentence to find connections with other similar words, then inputted the value to the pre-trained CNN (Convolutional Neural Network) model to detect any swears. For target recognition we proposed a sequential algorithm based on KoNLPY.
There are various typing practice applications. In addition, research cases on learning applications that support typing practice have been reported. These services are usually provided in a way that utilizes their own built-in text. Learners collect various contents through web services and use them a lot for learning. Therefore, this paper proposes a learning application to increase the learning effect by collecting vast amounts of web content and applying it to typing practice. The proposed application is implemented using Tkinter, a GUI module of Python. BeautifulSoup module of Python is used to extract information from the web. In order to process the extracted data, the NLTK module, which is an English data preprocessor, and the KoNLPy module, which is a Korean language processing module, are used. The operation of the proposed function is verified in the implementation and experimental results.
Lee, Yeong-Ah;Lee, Sun-Myung;Lee, Ju-Yon;Lee, Ki Yong
Annual Conference of KIPS
/
2021.11a
/
pp.466-469
/
2021
최근 자연어 처리에 대한 관심이 증가함에 따라 자연어 처리 기술을 활용한 다양한 추천 시스템이 등장하고 있다. 본 논문에서는 자연어 처리를 이용한 서비스를 개발한다. 본 논문에서 개발한 서비스는 KoNLPy 와 Word2Vec 을 이용하여 크라우드 펀딩 프로젝트 창작자 및 후원자에게 키워드 및 키워드와 유사한 단어가 제목에 포함되는 프로젝트를 추천해준다. 단문 텍스트로서 프로젝트 제목을 사용하여 데이터를 자연어 처리 한 후, 딥러닝 모델에 적용시켜 추출한 데이터를 기반으로 창작자와 후원자에게 추천해주는 방식이다. 따라서 본 서비스는 프로젝트 제목 정보를 통한 추천 시스템의 개발로, 나아가 영화, 도서와 같은 콘텐츠 추천 분야에도 적용할 수 있을 것으로 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.321-322
/
2022
스마트폰 사용자가 늘어남에 따라 갖춰줘야 할 보안성이 취약하여, 다양한 바이러스 및 악성코드 위험에 노출되어 있다. 안드로이드는 운영체제 중 가장 많이 사용되는 운영체제로, 개방성이 높으며 수많은 악성 앱 및 바이러스가 마켓에 존재하여 위험에 쉽게 노출된다. 2년 넘게 이어진 코로나 바이러스(Covid-19)으로 인해 꾸준히 위험도가 높아진 피싱공격(Phshing attack)은 현재 최고의 스마트폰 보안 위협 Top10에 위치한다. 본 논문에서는 딥러닝 기반 자연어처리 기술을 통해 피싱 공격 대응 방법 제안 및 실험 결과를 도출하고, 또한 향후 제안 방법을 보완하여 피싱 공격 및 다양한 모바일 보안 위협에 대응할 수 있는 앱을 설계할 것이다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.701-702
/
2023
비대면 교육이 증가함에 따라 강의, 특강과 같은 정보성 동영상의 수가 급격히 많아지고 있다. 이러한 정보성 동영상을 보아야 하는 학습자들은 자원과 시간을 효율적으로 활용할 수 있는 동영상 이해 및 학습 시스템이 필요하다. 본 논문에서는 GPT-3 모델과 KoNLPy 사용하여 동영상 요약을 수행하고 키워드 기반 해당 영상 프레임으로 바로 갈 수 있는 시스템의 개발내용에 대해 기술한다. 이를 통해 동영상 콘텐츠를 효과적으로 활용하여 학습자들의 학습 효율성을 향상시킬 수 있을 것으로 기대한다.
Journal of The Korean Association For Science Education
/
v.38
no.2
/
pp.219-234
/
2018
In this study, we explored the possibility of automating the process of analyzing elements of scientific argument in the context of a Korean classroom. To gather training data, we collected 990 sentences from science education journals that illustrate the results of coding elements of argumentation according to Toulmin's argumentation structure framework. We extracted 483 sentences as a test data set from the transcription of students' discourse in scientific argumentation activities. The words and morphemes of each argument were analyzed using the Python 'KoNLPy' package and the 'Kkma' module for Korean Natural Language Processing. After constructing the 'argument-morpheme:class' matrix for 1,473 sentences, five machine learning techniques were applied to generate predictive models relating each sentences to the element of argument with which it corresponded. The accuracy of the predictive models was investigated by comparing them with the results of pre-coding by researchers and confirming the degree of agreement. The predictive model generated by the k-nearest neighbor algorithm (KNN) demonstrated the highest degree of agreement [54.04% (${\kappa}=0.22$)] when machine learning was performed with the consideration of morpheme of each sentence. The predictive model generated by the KNN exhibited higher agreement [55.07% (${\kappa}=0.24$)] when the coding results of the previous sentence were added to the prediction process. In addition, the results indicated importance of considering context of discourse by reflecting the codes of previous sentences to the analysis. The results have significance in that, it showed the possibility of automating the analysis of students' argumentation activities in Korean language by applying machine learning.
As 49% of the world's population uses social media platforms, communication and content sharing within social media are becoming more active than ever. In this environmental base, the one-person media market grew rapidly and formed public opinion, creating a new trend called sell-sumer. This study defined new types of influencers by product category by analyzing the subject concentration of the commercial/non-commercial keywords of influencers and the impact of the ratio of commercial postings on sales. It is hoped that influencers working within social media will be helpful to new sales strategies that are transformed into sell-sumers. The method of this study classifies influencers' commercial/non-commercial posts using Python, performs text mining using KoNLPy, and calculates similarity between FastText-based words. As a result, it has been confirmed that the higher the keyword theme concentration of the influencer's commercial posting, the higher the sales. In addition, it was confirmed through the cluster analysis that the influencer types for each product category were classified into four types and that there was a significant difference between groups according to sales. In other words, the implications of this study may suggest empirical solutions of social media sales strategies for influencers working on social media and marketers who want to use them as marketing tools.
본 논문에서는 고도장비의 운용 및 정비를 위한 교육훈련 시스템 개발을 위해 자연어 처리와 딥러닝 기술을 이용하여 항공정비와 관련된 전문분야의 문서 분류가 가능한 방법을 제안하고자 한다. 문서 분류 모델의 개발을 위해 항공정비 교범을 텍스트 파일로 변환하여 총 4917개의 문서를 생성하였으며, 정비사 개인별 정비능력 관리(IMQC)를 기준으로 12개의 범주로 구분하였다. 수집된 문서는 전문분야의 문서인 점을 고려하여 전문용어 사전을 추가하였으며, KoNLPy를 이용하여 전처리를 수행하였다. 전문분야의 문서는 범주에 상관없이 문서 내용의 유사도가 매우 높은 특징을 가지고 있어, 특정 범주내에서 중요한 정도를 잘 표현 할 수 있는 TF-ICF를 이용하여 특징 추출을 하였다. 이후 합성곱 신경망(CNN)을 이용하여 특징 맵을 생성한 후 완전 결합 계층을 통하여 분류하였으며, 테스트 문서 983건을 분류한 결과 평균 73.6%의 분류성능을 보여주었다.
Purpose: A significant amount of public opinion about nurse bullying is expressed on the internet. The purpose of this study was to analyze the linkage structures among words extracted from comments on internet articles related to nurse workplace bullying using semantic network analysis. Methods: From February 2018 to April 2019, comments made on news articles posted to the Daum and Naver web portal containing keywords such as "nurse", "Taeum", and "bullying" were collected using a web crawler written in Python. A morphological analysis performed with Open Korean Text in KoNLPy generated 54 major nodes. The frequencies, eigenvector centralities, and betweenness centralities of the 54 nodes were calculated and semantic networks were visualized using the UCINET and NetDraw programs. Convergence of iterated correlations (CONCOR) analysis was performed to identify structural equivalence. Results: This paper presents results about March 2018 and January 2019 because these months had highest number of articles. Of the 54 major nodes, "nurse", "hospital", "patient", and "physician" were the most frequent and had the highest eigenvector and betweenness centralities. The CONCOR analysis identified work environment, nurse, gender, and military clusters. Conclusion: This study structurally explored public opinion about nurse bullying through semantic network analysis. It is suggested that various studies on nursing phenomena will be conducted using social network analysis.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.2
/
pp.373-378
/
2023
Untypical symptoms and lack of diagnostic records make it difficult for even medical specialists to detect rare diseases. Thus, it takes a lot of time and money from the onset of symptoms to an accurate diagnosis, which seriously results in physical, mental, and economic pressure on patients. In this paper, we propose and implement an early detection assistance system for rare diseases using web crawling and text mining, which can suggest the names of suspected rare diseases so that medical staffs can easily recall the disease names and make a final diagnosis of the rare diseases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.