• Title/Summary/Keyword: Knock-out mice

Search Result 51, Processing Time 0.02 seconds

Proline-Rich Acidic Protein 1 (PRAP1) is a Target of ARID1A and PGR in the Murine Uterus

  • Kim, Tae Hoon;Jeong, Jae-Wook
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.277-284
    • /
    • 2019
  • ARID1A and PGR plays an important role in embryo implantation and decidualization during early pregnancy. Uterine specific Arid1a knockout ($Pgr^{cre/+}Arid1a^{f/f}$) mice exhibit in non-receptive endometrium at day 3.5 of gestation (GD 3.5). In previous studies, using transcriptomic analysis in the uterus of $Pgr^{cre/+}Arid1a^{f/f}$ mice, we identified proline-rich acidic protein 1 (PRAP1) as one of the down-regulated genes by ARID1A in the uterus. In the present study, we performed RT-qPCR and immunohistochemistry analysis to investigate the regulation of PRAP1 by ARID1A and determine expression patterns of PRAP1 in the uterus during early pregnancy. During early pregnancy, PRAP1 expression was strong at day 0.5 of gestation (GD 0.5) and then decreased at GD 3.5 in the epithelium and stroma. After implantation, PRAP1 expression was remarkably reduced in the uterus. However, the expression of PRAP1 at GD 3.5 was remarkably increased in the $Pgr^{cre/+}Arid1a^{f/f}$ mice. To determine the ovarian steroid hormone regulation of PRAP1, we examined the expression of PRAP1 in ovariectomized control, $Pgr^{cre/+}Arid1a^{f/f}$, and progesterone receptor knock-out (PRKO) mice treated with progesterone. While PRAP1 proteins were strongly expressed in the luminal and glandular epithelium of control mice treated with vehicle, progesterone treatment suppressed the expression of PRAP1. However, PRAP1 was not suppressed in both the $Pgr^{cre/+}Arid1a^{f/f}$ and PRKO mice compared to controls. Our results identified PRAP1 as a novel target of ARID1A and PGR in the murine uterus.

PRIP, a Novel Ins(1,4,5)P3 Binding Protein, Functional Significance in Ca2+ Signaling and Extension to Neuroscience and Beyond

  • Kanematsu, Takashi;Takeuchi, Hiroshi;Terunuma, Miho;Hirata, Masato
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • Investigation of chemically synthesized inositol 1,4,5-trisphosphate [$Ins(1,4,5)P_3$] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-${\delta}1$ (PLC-${\delta}1$) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind $Ins(1,4,5)P_3$ via the pleckstrin homology domain, the involvement of PRIP-1 in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP ($GABA_A$ receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in $GABA_A$ receptor signaling. For this purpose PRIP knock-out mice were analyzed for $GABA_A$ receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of $GABA_A$ receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling and $GABA_A$ receptor signaling based on the characteristics of binding molecules.

Expression of Cu/Zn SOD Protein Is Suppressed in hsp 70.1 Knockout Mice

  • Choi, S-Mi;Park, Kyung-Ae;Lee, Hee-Joo;Park, Myoung-Sook;Lee, Joung-Hee;Park, Kyoung-Chan;Kim, Man-Ho;Lee, Seung-Hoon;Seo, Jeong-Sun;Yoon, Byung-Woo
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.111-114
    • /
    • 2005
  • Heat shock proteins (HSPs) are known to protect cells from oxidative stress and other types of injuries. We previously reported the neuroprotective effect of HSP70 following cerebral ischemia and reperfusion using hsp 70.1 knockout (KO) mice. However, the precise role of HSP70 in neuroprotection has not been established yet. The purpose of this study was to investigate the relationship between HSP70 and antioxidant enzymes using hsp 70.1 KO mice. The activities of both SOD-1 and SOD-2 were significantly decreased in hsp 70.1 KO mice than in the wild type (WT) littermates. SOD-1 protein level in the hsp 70.1 KO mice was lower than that of WT. We speculate that HSP70 might be involved in regulation of expression of SOD-1 at the level of transcription or by post-transcriptional modification.

Influence of Interferon-${\gamma}$ Deficiency in Immune Tolerance Induced by Male Islet Transplantation

  • Kim, Yong-Hee;Lim, Young-Kyoung;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.358-363
    • /
    • 2011
  • Background: Traditionally, interferon-${\gamma}$ (IFN-${\gamma}$) was regarded as a pro-inflammatory cytokine, however, recent reports suggested role of IFN-${\gamma}$ in immune tolerance. In our previous report, we could induce tolerance to male antigen (HY) just by male islet transplantation in wild type C57BL/6 mice without any immunological intervention. We tried to investigate the influence of IFN-${\gamma}$ deficiency on tolerance induction by male islet transplantation. Methods: To examine the immunogenicity of male tissue in the absence of IFN-${\gamma}$, we transplanted male IFN-${\gamma}$ knock-out (KO) skin to female IFN-${\gamma}$ KO mice. Next, we analyzed male IFN-${\gamma}$ KO islet to streptozotocin-induced diabetic female IFN-${\gamma}$ KO mice. And, we checked the functionality of grafted islet by graft removal and insulin staining. Results: As our previous results in wild type C57BL/6 mice, female IFN-${\gamma}$ KO mice rejected male IFN-${\gamma}$ KO skin within 29 days, and did not reject male IFN-${\gamma}$ KO islet. The maintenance of normal blood glucose level was dependent on the presence of grafted male islet. And the male islet recipient did not reject 2nd challenge of male islet graft also. Conclusion: Deficiency of IFN-${\gamma}$ does not have influence on the result of male skin graft and male islet transplantation. Conclusively, male islet transplantation induced T cell tolerance is not dependent on the presence of IFN-${\gamma}$.

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Dopamine Transporter Gene Polymorphism in ADHD (주의력결핍 과잉운동장애에서 도파민 수송체 유전자 다형성)

  • Shin, Dongwon
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • Patients with attention deficit hyperactivity disorder(ADHD) have symptoms of inattention, hyperactivity, impulsivity. Symptoms of ADHD are responsive to medications such as methylphenidate, dextroamphetamine, pemoline, and bupropion. The functional change of the dopamine transporter is related to the therapeutic effect of these drugs. This can be one reason for the dopamine transporter to be emphasized in the research field of ADHD. ADHD has a genetic tendency. Since dopamine transporter gene(DAT1) knock out mice were reported to be several times more active than normal mice in a novel situation, lights has been shed on DAT1 as a candidate gene for ADHD. Though there have been several studies which reported an association between DAT1 and ADHD, the association between DAT1 and ADHD is not conclusive. Since Vandenbergh reported the DAT1 polymorphism with variable number of tandem repeats(VNTR), and the racial differences in allelic frequencies of the DAT1, wide ethnic variation in the distribution of the DAT1 polymorphism had been confirmed. Wide ethnic variation in the distribution of the DAT1 suggested that there might be ethnic difference in the association between DAT1 and ADHD. Before applying previous findings to Koreans, verification might be needed for Korean patients with ADHD.

  • PDF

Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity

  • Kim, Somi;Kim, TaeHyun;Lee, Hye-Ryeon;Kong, Young-Yun;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.515-522
    • /
    • 2015
  • Notch signaling is a key regulator of neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-2 (Mib2) is an essential positive regulator of the Notch pathway, which acts in the Notch signal-sending cells. Therefore, genetic deletion of Mib2 in the mouse brain might help understand Notch signaling-mediated cell-cell interactions between neurons and their physiological function. Here we show that deletion of Mib2 in the mouse brain results in impaired hippocampal spatial memory and contextual fear memory. Accordingly, we found impaired hippocampal synaptic plasticity in Mib2 knock-out (KO) mice; however, basal synaptic transmission did not change at the Schaffer collateral-CA1 synapses. Using western blot analysis, we found that the level of cleaved Notch1 was lower in Mib2 KO mice than in wild type (WT) littermates after mild foot shock. Taken together, these data suggest that Mib2 plays a critical role in synaptic plasticity and spatial memory through the Notch signaling pathway.

Immunological Roles of Pasteurella multocida Toxin (PMT) Using a PMT Mutant Strain

  • Kim, Tae-Jung;Toan, Nguyen Tat;Jang, Eun-Jin;Jung, Bock-Gie;Lee, Jae-Il;Lee, Bong-Joo
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.364-366
    • /
    • 2007
  • The immunological role of the Pasteurella multocida toxin (PMT) in mice was examined using a PMT mutant strain. After a nasal inoculation, the mutant strain failed to induce interstitial pneumonia. Moreover, PMT had no significant effect on the populations of CD4+, CD8+, CD3+, and CD19+ immunocytes in blood or on the populations of CD4+ and CD8+ splenocytes (P<0.01). However, there was a significant increase in the total number of cells in the BAL samples obtained from the wild-type P. multocida-inoculated mice. On the other hand, the level of IL-l expression decreased when the macrophages from the bronchio-alveolar lavage were stimulated with PMT. Overall, PMT appears to play some role (stimulating and/or inhibiting) in the immunological responses but further studies will be required to confirm this.

Taste Sensation in Drosophila melanoganster

  • Lee, Youngseok;Poudel, Seeta
    • Hanyang Medical Reviews
    • /
    • v.34 no.3
    • /
    • pp.130-136
    • /
    • 2014
  • Animals find nutritious foods to survive, while avoiding aversive and toxic chemicals through the chemosensory faculties of olfaction and taste. The olfaction is comparatively well characterized, but the studies of taste are only recently developing since after 2000. Genetic, immunohistochemistry, and electrophysiological studies with knock-out transgenic mice opened up the taste field in mammals. Taste in insects has been only recently been studied after mammalian taste receptors were identified. Flies also discriminate the differences of sweet, salty and sour food, while being able to detect and reject potential foods contaminated with toxins or detrimental chemicals. These discriminatory abilities indicate that flies house basic taste receptors in their taste organs like humans. For the last decade, the sweet and bitter gustatory receptors in Drosophila have been characterized. In this review, we compare the taste anatomy between humans and insects. We also introduce five canonical taste sensations in Drosophila. In addition, we introduce new taste repertoires, that fruit flies can sense water and fatty acids as well as the carbonation buffer in beverage. These studies on simple model organisms will open up a new potential for scientists to further investigate these characteristics in vertebrates.