• Title/Summary/Keyword: Kitchen hood

Search Result 40, Processing Time 0.019 seconds

기술사 마당 - 주방 후드 부스타 배기 방식

  • Jin, Nam Gi
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.6
    • /
    • pp.44-51
    • /
    • 2012
  • Local functional, closed the hood and exhaust are classified as open-style hood. Around the closed hood contaminants prevent the spread of contaminants. Surrounded Some pollutants (open-style hood is used in cases where the odor, vapor diffusion, and inferior) of indoor allowed to Hood expressions, which are used for kitchen, laboratory, factory canopy is typical. Contamination that occurs during cooking, kitchen ventilation barrier materials are the biggest problem, its solution by introducing fresh outside air in the kitchen troubleshoot and. Study on the kitchen exhaust airflow for my kitchen, and perform a number of each Institute and at the University of hydrodynamic analysis is investigated.

  • PDF

Study on Development of Inducing Airflow Duct System for Kitchen Hood Using Ejector Method (이젝터 기술을 활용한 주방후드용 기류유인 덕트 시스템의 개발에 관한 연구)

  • Son, Yu-Ra;Hong, Seong-Gyu;Yang, Jeong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.27-40
    • /
    • 2019
  • Kitchen hoods are limited in discharging all contaminants produced during cooking. Contaminants that have not been discharged can rise to the upper part of the kitchen and become stacked. To solve this problem, there is a way to increase the air volume of the kitchen hood, but there are limits, so a new system is required. This study proposes the Duct System (IADK : Inducing Airflow Duct system for Kitchen hood )through 3D printers and experiments. To do this, the pressure is measured to verify the three levels of air volume provided by the kitchen hood. To check the degree of loss of flow in the existing kitchen hood system, install flexible ducts alone to measure the pressure. Change the internal diameter and type of connection of the IADK and measure the pressure. The air pressure, static pressure difference, and loss factor are calculated and analyzed using the pressure measured through the experiment.

A Study on the Improvement Strategies for Exhaust Performance in Commercial Kitchen Hoods (상업용 주방후드의 배기성능 개선방안에 관한 연구)

  • 박진철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.439-445
    • /
    • 2003
  • The purpose of this study is to suggest the improvement strategies for exhaust performance in composite kitchen hoods. The Exhaust only hood, the 2-way compensating hood and the 3-way compensating hood were selected, and the laboratory experiments were performed to compare the local exhaust efficiency and the indoor temperature distributions according to the variations of the hood type and supply/exhaust air velocity. The results of this study can be summarized as follows. The compensating hood has better performance than exhaust only hood in the aspect of local exhaust efficiency and temperature distribution. The 3-way compensating hood shows the best performance when the supply air velocity is about 2.7 m/s, and the 2-way compensating hood at the supply air velocity of 3.5 w/s. In the same exhaust rate condition, if the exhaust area of the hood is increased and therefore the exhaust velocity is lowered, the supply air velocity is also lowered to get the optimum performance. The optimum exhaust velocity range of the commercial kitchen hood which derived from this study is 0.48 ∼ 0.55 m/s.

An active system for unnecessary noise reduction in kitchen range hoods

  • Kim, Eunhee;Jang, Jaechun;Lim, Changmok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2016
  • We have surrounded undesired living noises in our life. One of biggest noises coming out of range hood during cooking in the kitchen. A range hood is one of the most important appliances in the kitchen because it ventilates polluted air out during cooking, and maintains air quality in the kitchen. But current kitchen range hoods bring up some issues; First, the range hoods consume massive amount of standby power not in use condition. Second, current models have designed manual fan operating system with sudden onset of noise with starting. In this paper, we propose an auto control system entire processes from air ventilation to noise reduction. Our system is consist of three parts (Eco-sensors pack, Main Controller and Active Noise Controller); Eco-sensors pack detects air pollution of kitchen areas and sends the detection values to Main Controller. Main Controller determines operation of range hood by detected values. Active Noise Controller is located inside of the range hood. It received starting signals from Main Controller which elicits degrees of polluted air condition and fan operating speed from 1 to 3. Once Active Noise Controller detected the signals, it runs a ventilating fan until new value from Main Controller becomes 0. while the range hood works, A noise cancellation algorithm inside of Active Noise Controller become activated to reduce levels of noise. As a result, the proposed system clearly shows reduction in power consumption include standby power and decreases in levels of noise.

Measurement noise and air flow of kitchen hood in the apartment (공동주택에서 주방후드 소음과 풍량 측정)

  • Park, Cheol-Yong;Hong, Goo-Pyo;Kim, Sang-Hun;Jang, Dong-Woon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.476-479
    • /
    • 2007
  • Kitchen hood was used exhausting contaminants and heat during cook. But many people do not use it easily because of the noise. Therefore this study was measured the noise when kitchen hood was working according to air flow mode. Because there are no measuring and analyzing standards in the setting house, it was referred to KS C 9304(Korean Standard). The result was shown the higher sound level than 45dB. Also it was compared the air flow that measured in the house and specified the brochure during the operation of the hood.

  • PDF

Exhaust Performance of a Kitchen Hood System with a Supply Air Slot on a Kitchen Table (조리대에 급기구를 가진 주방 레인지후드의 배기 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.489-494
    • /
    • 2016
  • There have been many cases when an air curtain installed in the apartment could not remove the gases well, such as carbon dioxide and particles like as smoke, oils, and vapors generated during cooking to disperse pollutants into the room. This study used a numerical analysis to show how the pollutant-removing performance of the range hood is changed when the air curtain is installed front of the kitchen table. The result of this study was that when the air amount supplied by an air curtain through the slot was about 50% of the exhaust amount, the capturing efficiency of the range hood for pollutants increased 90% more than without an air curtain. Even when the amount of supplied air was small, the capturing efficiency improved markedly with the use of an upward air curtain. In case that the air flow rate of the slot was greater than 60%, the capturing efficiency decreased.

A Study on the Performance of Noise Level and Airflow Amount of a Kitchen Hood by the Different Conditions of Airflow Path. (레인지후드 덕트설치 조건에 따른 소음 및 풍량특성 연구)

  • Kim, Il-Ho;Kim, Youn-Jae;Lee, Yong-Jun;Lee, Kyu-Dong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.11-14
    • /
    • 2007
  • Noise level and Airflow amount of a kitchen hood are affected by the conditions of airflow path. Thus this study is expected to be used as a basic reference in designing airflow path of apartment housing throughout analysing changes in noise level and airflow amount from the various conditions of airflow path. Noise level generated by the kitchen hood is estimated in a kitchen and a living room of two constructed apartment houses, and an experiment is conducted in an half anechoic chamber to analyze noise level and airflow amount by the different length, diameter and number of windings of a round shaped soft duct which is connected to the kitchen hood. The measured results in apartment houses show that the noise level in both apartments exceeds the NC standard greatly in living spaces. In apartment A, a regular apartment house, the noise level was $NC-65{\sim}75$, $NC-45{\sim}60$ and NC-70, NC-45 in the kitchen and living room with an operation of kitchen hood in 1 and 3 stages. In apartment B, an apartment complex, the noise level was NC-55 and NC-60 in the kitchen and living room with an operation of kitchen hood in 3 stages. In particular, there was an increase of noise level at 125Hz-band resulted from an amplification of sound, which requires adequate measures in noise reduction. The results measured in Half anechoic chamber show 99% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ 100mm to ${\Phi}$ 125mm, 37% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ 125mm to ${\Phi}$ 150mm, and 173% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ l00mm to ${\Phi}$ 150mm. The noise level was lower than the level measured in apartment housing about 20 in NC-value and 11.4 in dB(A)-value, which was interpreted as the effect of the load by the pressure condition at the rear end of the duct. Also, an amplification of sound in 125Hz-band influenced NC-value considerably, therefore effective measure is needed.

  • PDF

Numerical Analysis of the Kitchen Hood Ventilation System for Marine Environment (선박용 주방후드 환기시스템에 관한 수치해석)

  • Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.96-101
    • /
    • 2015
  • This study regards distributions of flow in the ventilation system used in the kitchen hood in a ship. In this study, for describing the flow in the ventilation system, three-dimensional steady-state turbulence was assumed for the governing equation. When the plume was formed, three gases, CO, CO2, and HCL, in the flow field of the hood were considered as the plume, and it was assumed that the sum of concentrations of the gases was 100%. As a result, it could be confirmed that the plume was smoothly discharged when the flow rate of the supply was ten times lower than that of the exhaust.

Exhaust Characteristics of Kitchen Hood System with Inclined Air Curtain (에어커튼형 주방 레인지후드의 배기 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.594-599
    • /
    • 2014
  • There have been many cases that the air curtain installed in the apartment can not well remove the gases such as carbon dioxide and particles such as smokes, oils and vapors generated during the cooking to disperse the pollutants into the room. This study uses the numerical analysis to show how the pollutant-removing performance of the range hood is changed when the air curtain is installed on the range hood of kitchen. As a result of the study, it turned out that, when the air amount supplied by air curtain through the slot was about 60% of exhaust amount, the capturing efficiency of range hood for pollutants increased by 70~80% more than the case without the air curtain. Even when the exhaust amount was small, the capturing efficiency was improved a lot with the use of air curtain. In case that the air flow velocity of slot was greater than 2 m/s, the capturing efficiency turned out to decrease.

A Numerical Study on the Performance Improvement of Kitchen Range Hood by Air Induction and Air Curtain (유도공기 및 에어커튼을 이용한 주방 레인지후드 성능 개선에 관한 수치모사)

  • Sohn, Deok-Young;Lim, Ji-Hong;Choi, Yun-Ho;Park, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.321-327
    • /
    • 2007
  • In an apartment house that is generally air-tight and well insulated, the combustion gas from cooking devices is the major source of air pollution in the kitchen. It spreads throughout the house affecting the overall Indoor all quality. In this study, the performance of the kitchen range hood which employs air induction and air curtain was investigated by numerical simulation. The results are compared with that of two other kitchen range hoods which are in general use. The two general types of range hoods considered in the present calculations are box and plate type range hoods. The former has a large capture space between the filter and suction duct, while the latter has little. It was found that the capture efficiency of the kitchen range hood with air induction and air curtain Is higher than that of the general types of range hoods by 20% approximately The reason may be because the air induction and the air curtain block the air stream escaping from the front and the side part of range hoods effectively and because an additional fan for air induction and air curtain increases suction flow rates.