• Title/Summary/Keyword: Kirkendall diffusion

Search Result 6, Processing Time 0.027 seconds

Siliconizing of Bonded Couple between Fe-5.8at.%Si and(Si Wafer or Fe-Si Alloy) (Fe-5.8 at.%Si과 (Si 웨이퍼 또는 Fe-Si합금)과의 접합에 의한 규소침투처리)

  • 이성열;정건영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.134-144
    • /
    • 2003
  • Reactive diffusion couples between Fe-5.8at.%Si and (Si wafer, $FeSi_2$, or FeSi alloy) were heat-treated at 1423k. The only layer of $Fe_3Si$ phase was formed in each diffusion couple. The width of $Fe_3Si$ layer was proportional to square root of diffusion time in each kind of diffusion couple. Growth rate of $Fe_3Si$ layer was relied on the concentration of Si in the supplied source of Si atoms. Interdiffusion coefficient of $Fe_3Si$ has been determined from the derived relation between growth rate constant and interdiffusion coefficient in this work. It was shown that the behavior of Kirkendall's void in $Fe_3Si$ layer was not affected by the kind of Si source. But solid solution $\alpha$ was formed in the diffusion couple between Fe-5.8 at.%Si and $Fe_3Si$ alloy. Kirkendall's voids in diffusional $\alpha$ were neglectively smaller than the case of $Fe_3Si$ phase growth.

Lifetime Estimation due to IMC(Intermetallic Compound) formation between Au wire and Al pad (Au wire와 Al pad사이의 IMC(Intermetallic Compound) 형성에 의한 수명예측)

  • Son, Jung-Min;Chang, Mi-Soon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1295-1300
    • /
    • 2008
  • During the manufacturing and the service life of Au-Al wire bonded electronic packages, the ball bonds experience elevated temperatures and hence accelerated thermal diffusion reactions that promote the transformation of the Au-Al phases and the IMC growth. In this paper, the IC under high temperature storage (HTS) tests at $175^{\circ}C,\;200^{\circ}C$, and $250^{\circ}C$ are meticulously investigated. Thermal exposure resulted in the IMC growth, Kirkendall void and the crack of the Au-Al phases. The crack propagation occurs resulting in the failure of the Au-Al ball bonds. As the IC was exposed at the high temperature, decreased in the lifetime.

  • PDF

Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries (커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용)

  • Lee, Young Kwang;Jeong, Sun Young;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.819-825
    • /
    • 2018
  • Porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were prepared by applying both template method and Kirkendall diffusion effect to electrospinning process. During heat-treatment processes, the solid Fe nano-metals formed by initial heat-treatment in the carbon matrix were converted into the hollow structured ${\alpha}-Fe_2O_3$ nanospheres. In particular, PS nanobeads added in the spinning solution were decomposed and formed numerous channels in the composite, which served as a good pathway for Kirkendall diffusion gas. The resulting porous nanofibers comprising hollow ${\alpha}-Fe_2O_3$ nanospheres were applied as an anode material for lithium-ion batteries. The discharge capacities of the nanofibers for the 30th cycle at a high current density of $1.0A\;g^{-1}$ was $776mA\;h\;g^{-1}$. The good lithium ion storage property was attributed to the synergetic effects of the hollow ${\alpha}-Fe_2O_3$ nanospheres and the interstitial nanovoids between the nanospheres. The synthetic method proposed in this study could be applied to the preparation of porous nanofibers comprising hollow nanospheres with various composition for various applications, including energy storage.

High Temperature Oxidation of ${Fe_3}Al-4Cr$ Alloys (${Fe_3}Al-4Cr$ 합금의 고온산화)

  • Kim, Gi-Young;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.34-38
    • /
    • 2001
  • Intermetallics of Fe-28%Al($Fe_3Al$) and Fe-28%Al-4%Cr($Fe_3Al-4Cr$) were oxidized at 1073, 1273 and 1473k in air for up to 17 days. The oxidation resistance of$Fe_3Al-4Cr$ was basically similar to or better than that of $Fe_3Al$. The oxide scales formed on $Fe_3Al$ consisted essentially of pure ${\alpha}-AL_2O_3$, while those formed on $Fe_3Al-4Cr$ consisted of ${\alpha}-AL_2O_3$ having dissolved iron and chromium ions. The preferential outward diffusion of substrate elements to form the outer oxide layer led to the formation of Kirkendall voids at the oxide-matrix interface. The scales formed on $Fe_3Al(-4Cr)$ were thin and dense up to 1273K, but they spalled easily at 1473K, accompanied by more weight gains.

  • PDF

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF